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ABSTRACT

A common assumption in the statistical model for Bayes premium in the insurance

context, is the independence between risk profiles associated with random quantities con-

sidered. In this communication we consider the compound collective risk model in which

the primary distribution is comprised of the Poisson–Lindley distribution with a λ param-

eter, and where the secondary distribution is an exponential one with a θ parameter. We

consider the case of dependence between risk profiles (i.e., the parameters λ and θ), where

the dependence is modelled by a Farlie–Gumbel–Morgenstern family. Statistical proper-

ties and some consequences on the Bayes premium of the structure dependence chosen are

studied.
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On the (weak) dependence between risk profiles

in insurance data analysis

ABSTRACT

A common assumption in the statistical model for Bayes premium in the in-

surance context, is the independence between risk profiles associated with random

quantities considered. In this communication we consider the compound collective

risk model in which the primary distribution is comprised of the Poisson–Lindley

distribution with a λ parameter, and where the secondary distribution is an ex-

ponential one with a θ parameter. We consider the case of dependence between

risk profiles (i.e., the parameters λ and θ), where the dependence is modelled by a

Farlie–Gumbel–Morgenstern family. Statistical properties and some consequences

on the Bayes premium of the structure dependence chosen are studied.

1 INTRODUCTION

The main random variables presented in the collective risk model are: the

frequency distribution for the number of claims N and a sequence of independent

and identically distributed random variables representing the size of the single claims

Xi. Frequency N and Severity Xi are assumed to be independent, conditional on

distribution parameters. Assumed a given model for these variables (Poisson and

exponential, respectively for instance), the interest is then focused in S = X1 + ...+

XN which denotes the aggregate losses or the total cost over a period.

The computations required to obtain S under the Poisson–exponential model

above cited are difficult to perform without the independence hypothesis. Peters et

al. (2008) proposed that this kind of independence assumption in operational risk

models should be investigated further.

On the other hand, actuarial data often present positively skewed and overdis-
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persion. Practitioners need more statistical models which are flexible for fitting data

and empirically fits many kinds of loss and/or actuarial data with a strong asymme-

try presence (Ghitany et al., 2008) and where some other properties as overdispersion

and zero–inflated are usually present in sample observations.

Using the Poisson–Lindley distribution as a primary distribution, we carry out

an easy implementable statistical procedure to investigate the importance of the

independence assumption and to produce an application that involves computa-

tional aspects and a simulated data analysis based on this procedure. Recently,

Hernández–Bastida et al. (2011) derived Bayesian premium under the collective

risk model using Poisson–Lindley and exponential distributions. Ghitany and Al–

Mutairi (2009) provided a comprehensive treatment of statistical behavior of the

Poisson–Lindley distribution and its parameter estimation.

In this paper, we propose a model of (weak) dependence between the prior

densities of these risk profiles, including the case of independence as a particular

case using the Farlie–Gumbel–Morgenstern (FGM) family of distributions (Morgen-

stern, 1956). By means of these tools, it is a straightforward matter to study how

the independence hypothesis affects actuarial decisions. By setting a measure of

comparison (for example, the Bayes premium), it suffices to compare this measure

over the entire class under consideration with the one that would be obtained under

independence.

The paper is organized as follows. In Section 2 we obtain the likelihood derived

from the choice of a Poisson–Lindley count distribution and exponential severities,

and present the class of priors considered to develop a Bayesian analysis jointly with

some interesting properties of these priors distributions. In Section 3 we describe

how the models react to variations in the independence of the risk profile priors with

respect to the Bayes premium, and how the results obtained can be used in practice.

Finally, some conclusions are presented in Section 4.
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2 THE MODEL

Sankaran (1970) introduced the discrete Poisson–Lindley distribution by com-

bining the Poisson and Lindley distributions obtaining that a random variable N

follows a discrete Poisson–Lindley distribution with parameter λ, when its proba-

bility density function is given by

Pr (N = k|λ) =
λ2(λ+ 2 + k)

(λ+ 1)k+3 , k = 0, 1, 2, ... λ > 0. (1)

Then, it follows from (1) that the moment generating function is given as fol-

lowing:

M1(t;λ) =
λ2 (exp(t)− λ− 2)

(λ+ 1)2(exp(t)− λ− 1)
. (2)

Some descriptive quantities are now immediately deduced:

IE [N ] =
λ+ 2

λ(λ+ 1)
, Var (N) =

λ3 + 4λ2 + 6λ+ 2

λ2(λ+ 1)2
,

concluding then that the Poisson–Lindley distribution presents overdispersion.

2.1 The likelihood

Suppose now that severities random variables Xi, i = 0, 1, ... follow an Expo-

nential distribution of parameter θ ≥ 0,

f2(xi|θ) = θe−θxi , xi > 0. (3)

Its moment generating function is given by M2(t; θ) =
θ

θ − t
. The mean and

variance, respectively, for each i are then IE[Xi] =
1

θ
, and Var (Xi) =

1

θ2
.

We assume conditional independence between claim amounts and claim num-

bers. Then, in the compound collective model our interest is focused on the random
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variable “total cost or aggregate loss”, S, where its probability density function is

defined by

f(s|λ, θ) =
∞∑
n=0

Pr(N = n|λ) · fn?2 (x|θ),

where Pr(N = n|λ) denotes the probability that n claims have occurred and fn?2 is

the n–th convolution of the f2(x|θ) function in (3).

In order to obtain a closed expression for f(s|λ, θ), we consider the following

cases:

1. If s = 0, then

f(0|λ, θ) = Pr(N = 0|λ) =
λ2(λ+ 2)

(λ+ 1)3
.

2. If s > 0, then after some straightforward calculation we obtain

f(s|λ, θ) = λ2(λ+ 1)−5 · θ · (θs+ (λ+ 1)(λ+ 3)) exp

(
− λθ

λ+ 1
s

)
.

As consequence of the above result, the mean and variance of variable S are

given by

IE (S) =
λ+ 2

θλ(λ+ 1)
, and Var (S) =

2λ3 + 7λ2 + 8λ+ 2

θ2λ2(λ+ 1)2
.

2.2 Introducing dependence in the risk profiles: the fgm

family of priors

In actuarial literature it is normally assumed that the parameters λ and θ are

independent. Although there has been significant theoretical development of the

sensitivity procedures in Bayesian statistics for prior independence (Lavine et al.,

1991; Wasserman et al., 1993; Berger and Moreno, 1994) relevant applications have

been less forthcoming. In this paper we propose to introduce some dependence

between the risk profiles θ and λ through the Farlie–Gumbel–Morgenstern (FGM)
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system. The FGM family has been used recently in Cossette et al. (2008) as a tool

to introduce dependence between claim amounts and the interclaim time, but in the

context of copula theory.

The bivariate FGM family of distributions (Morgenstern, 1956) has a joint

density function of the form

f(x, y) = f(x)g(y) [1 + ω (1− 2F (x)) (1− 2G(y))]

= f(x)g(y) + ω [f(x) (2F (x)− 1)] [g(y) (2G(y)− 1)] . (4)

It is well known, that the parameter ω is directly proportional to the corre-

lation coefficient and the product moment correlation coefficient for all the FGM

distributions with continuous marginals can never exceed
1

3
, corresponding to the

case of uniform marginals. In this sense, we refers this situation as relatively weak

dependence.

Assuming that the marginal prior distributions are λ ∼ G(αλ, βλ), and θ ∼

G(αθ, βθ), i.e. the natural conjugate priors under Poisson or exponential sampling,

we proceed now to obtain the correlation coefficient over the FGM family of priors

in (4) replacing f(x) by π(λ) and g(y) by π(θ), respectively.

Observe that

IE (λ · θ) =
1

βλβθ
IE (ξ1ξ2) , (5)

where ξ1 = βλλ ∼ G(αλ, 1) and ξ2 = βθθ ∼ G(αθ, 1). Then, similarly to D’Este

(1981) we obtain

IE (λ · θ) = βλ · βθ · IE (ξ1) · IE (ξ2) ·
(

1 + ω

{
2
I(αλ)

B(αλ)
− 1

}{
2
I(αθ)

B(αθ)
− 1

})
, (6)

where I(υ) =
∫ 1

0

zυ−1

(1 + z)2υ+1
dz and B(υ) =

Γ(υ)Γ(υ + 1)

Γ(2υ + 1)
and function I(·) satisfy

the relation

2
I(υ)

B(υ)
− 1 =

1

υ
· 2−2υ · Γ(2υ + 1)

Γ(υ)Γ(υ + 1)
.
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Therefore, from (6) we have the following

IE (λ · θ) =
αλαθ
βλβθ

(
1 +

ω2−2(αλ+αθ)

αλαθ
· Γ(2αλ + 1)Γ(2αθ + 1)

Γ(αλ)Γ(αλ + 1)Γ(αθ)Γ(αθ + 1)

)
, (7)

and the (a priori) structure of dependence between the risk profiles λ and θ measured

by the correlation coefficient is given by

Corr(λ, θ) =
Cov(λ, θ)√

Var(λ)Var(θ)

=
ω

√
αλαθ

· 1

22(αλ+αθ) ·B(αλ, αλ + 1) ·B(αθ, αθ + 1)
. (8)

For the special case, αλ = αθ = 1 and since |ω| ≤ 1, it follows that

|Corr(λ, θ)| = |ω|
4
≤ 1

4
. (9)

3 Sensitivity of the independence hypothesis

Firstly, let us consider the class of priors given in (4) partitioned into two

subclasses of priors reflecting positive or negative dependence each one, respectively:

Π = Π(ω>0) ∪ Π(ω<0),

where

Π(ω>0) =
{
π(λ, θ) = (1− ω)πI(λ, θ) + ωπ(ω=1)(λ, θ), ω ∈ [0, 1]

}
,

Π(ω<0) =
{
π(λ, θ) = (1− ω)πI(λ, θ) + ωπ(ω=−1)(λ, θ), ω ∈ [0, 1]

}
,

πI(λ, θ) = π1(λ) · π2(θ) is the prior density obtained under independence and

π(ω=1,−1)(λ, θ) in the FGM family with ω = 1 (−1) are fixed densities with marginals

π1(λ) and π2(θ), representing the larger of positive (negative) dependence (De la

Horra and Fernándes, 1995). In order to test the influence of the independence

hypothesis on posterior decisions, we focus the problem in the following way.
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The Bayesian premium (i.e., the posterior mean of the true individual premium)

plays an important role in ratemaking. As we know, IE(S) =
λ+ 2

λ(λ+ 1)θ
. Then, the

Bayes premium is obtained as the (posterior) expected value,

IEπω(·|s)

(
λ+ 2

λ(λ+ 1)

1

θ

)
=
∫ ∞
0

∫ ∞
0

λ+ 2

λ(λ+ 1)

1

θ
πω(λ, θ|s)dλdθ. (10)

We present a particular way of determining whether there are large departures

from premium measures when the assumption of prior independence is relaxed, and

we find a method to account for such consequences in several common situations.

That is, once the data are observed, we are interested in upper and lower bounds of

these posterior quantities in (10) over class Π.

As in De la Horra and Fernández (1995), differentiating with respect to ω, the

above bounds are calculated comparing only the three following quantities:∫ ∫
h(λ, θ) · f(s|λ, θ) · π(ω=i)(λ, θ)dλdθ∫ ∫

f(s|λ, θ) · π(ω=i)(λ, θ)dλdθ
, i = −1, 1, (11)

and

∫ ∫
h(λ, θ) · f(s|λ, θ) · πI(λ, θ)dλdθ∫ ∫

f(s|λ, θ) · πI(λ, θ)dλdθ
, (12)

where h(λ, θ) =
λ+ 2

λ(λ+ 1)

1

θ
and f(s|λ, θ) is the likelihood function given in (3).

The difference between the upper and lower bound obtained from (11) and (12),

denoted by U − L, is a measure of the robustness (or its absence, i.e. sensitivity)

of the prior independence, for different values of s. In order to standardize this

measure, we use a slight modification of the RS factor (Sivaganesan, 1991) defined

by

RS = 100
U − L

2IEπI (h(λ, θ))
. (13)

RS is a standardized factor which can be thought of as the percentage variation

in the Bayes premium as πα varies over Π on either side of IEπI (h(λ, θ)|s), which

is used as a pattern (independence scene), like the centre of the variation interval

(L,U).
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Example Consider an insurance business where the number of claims N has a

Poisson–Lindley distribution with the parameter λ. Suppose also that each single

claim size distribution is exponential with parameter θ. As commented in previous

sections, one of the most useful compound collective risk models consists in assuming

a Gamma prior distribution over λ (and θ). This is reasonable, since the shape

of the Gamma density is very flexible (Miller and Hickman, 1974; Scollnik, 1995;

among others). Let us now consider a numerical illustration. Supposing the actuary

assumes the expected frequency to be IE(λ) = 1 with “no claims” as the most frequent

event. Hence, with these two items of partial prior information, it is reasonable to

assume that the base prior π1(λ) is G(1, 1) (with this elicitation the actuary knows

that the mode is around 0). Using similar reasoning, suppose that the prior density

for θ is also G(1, 1), (i.e., the expert expects a claim size of 1 monetary unit). Due

to the exponential behaviour of the above priors, we can consider this elicited prior

within a weak prior information context.

The ranges of the Bayes premium and theRS factor, for various values of s (from

0 to 10 by steps of 0.01) are shown in Figure 1. Similar conclusions may be obtained

with greater values of s. The computations involved in (10)–(12) were carried out

using Mathematica software. Several minutes of CPU time were needed to complete

the calculations. The sensitivity of the answer to independence departures was

measured by considering the RS factor in (13).

Some interesting general points emerge from Figure 1. First, observe that for the

weak prior information (αλ = βλ = αθ = βθ = 1) scene considered, the correlation

between the risk profiles in (9) is bounded by
1

4
. Then, we would expect a similar

behaviour of the RS–factor over the class. If ω is used to control the confidence level

of practitioners concerning the independence assumption, similar behaviour would

be expected for the RS–factor, for example, but this does not hold.
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Figure 1: Left: Upper (dash–point line) and Lower (dashed line) bounds for the

Bayes premium in the FGM family with both fixed marginals G(1, 1). Continuous

line represents the Bayes premium under independence hypothesis. Right: RS

factor.

4 CONCLUSIONS

In this paper we have examined the hypothesis of independence between the risk

profiles (the parameters of the problem). To do this, firstly we propose an alternative

close–fitting collective risk model where the primary and secondary distributions are

Poisson–Lindley and exponential, respectively. Secondly, dependence was modelled

using the Farlie–Gumbel–Morgenstern family, and the coefficient of linear correla-

tion was determined with respect to the prior bidimensional distribution, in the case

of independence, which is also known as the index of mutual dependence. Subse-

quently, we set out to analyze the robustness of a posterior magnitude of interest,

the Bayes premium, with respect to variations from independence. An analytic path
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was developed, and various specific contexts examined. The numerical conclusions

obtained reveal considerable, and very marked, differences between the values of the

Bayes premiums within contexts of equal linear correlation.
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namic operational risk: modelling dependence and combining different sources

of information”. Preprint, CSIRO, call number CMIS2741.

• Sankaran, M. (1970). “The discrete Poisson–Lindley distribution”. Bio-

metrics, 26, pp. 145–149.

• Scollnik, D.P.M. (1995). “Bayesian analysis of two overdispersed Poisson

regression models”. Communications in Statistics: Theory and Methods, 24

(11), pp. 2901–2918.

XXI Jornadas de ASEPUMA y IX Encuentro Internacional
Anales de ASEPUMA n 21:331

12



Dependence in insurance data analysis

• Sivaganesan, S. (1991). “Sensitivity of some posterior summaries when the

prior is unimodal with specified quantiles”. Canadian Journal of Statiscis, 19,

pp. 57–65.

• Wasserman, L.; Lavine, M. and Wolpert, R. (1993). “Linearization of

Bayesian robustness problems”. Journal of Statistical Planning and Inference,

37, pp. 307-316.

XXI Jornadas de ASEPUMA y IX Encuentro Internacional
Anales de ASEPUMA n 21:331

13


