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Abstract

At the beginning of the 90’s, Artificial Neural Networks (ANNs) started their applications in finance. The ANNs are
data-drive, self-adaptive and non-linear methods that do not require specific assumptions about the underlying model.
In general, there are five groups of networks used as forecasting tools: 1) Feedforward Networks, like the Multilayer
Perceptron (MLP), 2) Recurrent Networks, 3) Polynomial Networks, 4) Modular Networks, and 5) Support Vector Ma-
chine. This paper carries out a review of the specialized literature on ANNs and makes a comparative analysis according
to their performance in forecasting stock indices and exchange rates. The objective is to assess the performance when
applying different types of networks in relation to MLP. It is shown that the MLP is the best network in forecasting time
series. However, it is shown that the MLP has important delimitations in several respects: network architecture, basic
functions and initialization weights.

Keywords: Artificial neural networks, Multilayer Perceptron, Forecasting time series.

Resumen

A principios de la década de los 90, las Redes Neuronales Artificiales (RNAs) comenzaron sus aplicaciones en finan-
zas. Las redes neuronales son dirigidas por datos, auto-adaptativas y los métodos no lineales que no requieren supuestos
específicos sobre el modelo subyacente. En general, hay cinco grupos de redes que se utilizan como herramientas de
pronóstico: 1) Redes Feedforward, como el perceptrón multicapa (MLP), 2) Redes recurrentes, 3) Redes polinómicas, 4)
Redes modulares, y 5) Apoyo Vector Machine. En este trabajo se realiza una revisión de la literatura especializada sobre
las RNA y hace un análisis comparativo de acuerdo a su desempeño en la predicción de índices bursátiles y tipos de
cambio. El objetivo es evaluar el rendimiento cuando la aplicación de diferentes tipos de redes en relación con la MLP. Se
muestra que la MLP es la mejor red en las series temporales de previsión. Sin embargo, está demostrado que la MLP tiene
delimitaciones importantes en varios aspectos: la arquitectura de red, las funciones básicas y los pesos de inicialización.

Palabras clave: Las redes neuronales artificiales, Perceptrón multicapa, series de tiempo Forecasting.

Código JEL: C45, C53, C22.
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1 Introduction

The efficient market hypothesis states that stock prices
come from a random walk, which implies that the stock
returns are not predictable for the public. However, there
exists significant empirical evidence that rejects such a hy-
pothesis. For example, there are studies that focus on the
persistence and long memory in the volatility of stock mar-
kets (Sharth and Medeiros, 2009; Venegas-Martínez and
Islas-Camargo, 2005), as well as others that sustain calen-
dar effects (McNelis, 2005). These studies leave the pos-
sibility open to predict the behavior of those markets and,
surprisingly, the number of research papers supporting the
possibility to forecast the prices of this kind of markets is
vast and growing.

Traditionally, econometrics has provided a widely
range of tools like the GARCH model for forecasting stock
prices and exchange rates. However, the rigidity (linear
in mean) and the violation of assumptions (non-negativity
of the coefficients) of such symmetric models have been
discussed in many studies; these models cannot account
for leverage effects, although they can account for volatil-
ity clustering (volatility appears in groups), leptokurtosis
(kurtosis excess), and fat tails (extreme values have a big-
ger probability than that obtained from the Normal distri-
bution).

The above facts have motivated the use of more flexi-
ble models in order to capture in a better way the financial
markets behavior (Brooks, 2006; McNelis, 2005). Some of
these models come from Artificial Intelligence (AI) that is
characterized by its flexibility and capability to integrate
different methodologies that somehow try to emulate the
biological systems behavior. Within this field, we can find
the Artificial Neural Networks (ANNs) that attempt to em-
ulate the human brain functions; see, for instance, Ander-
son (2007).

There are many potential advantages offered by the
ANNs, for instance: i) non-linearity, that is, the neural
processor is basically non-linear, ii) input-output mapping,
in other words, through supervised learning the network
learns according to the examples, iii) adaptability, that is
to say, the network has the ability to adapt their synaptic
weights even in real time, iv) response capacity, in other
words, in the context of pattern classification the network
not only provides a pattern selection but also the reliability
of decision making, v) fault tolerance due to the massive
interconnection, vi) integrated large scale, that is, its paral-
lelism makes it potentially faster for certain tasks and thus
capturing complex behaviors, vii) uniformity in the analy-
sis and design, that is to say, the same notation is used in all
fields engaged with networks, and viii) neurobiology anal-
ogy (Haykin, 1994). In general, the ANNs are data-drive,
self-adaptive and non-linear methods that do not require
specific assumptions about the underlying model.

Yet, there have been severe criticisms in applications
of networks in finance, we may mention, for instant that:
a) the estimated coefficients obtained by the network do
not have a real interpretation, b) there are no specific tests
available in order to consider that a model is adequate,

and c) the results are satisfactory inside the sample, but
outside the sample are poor (Brooks, 2006). Despite of
these critiques, the ANNs have been successfully applied
in some specific finance areas. For example, the classifica-
tion of areas proposed by Mender et al. (1996) is based on
the decision-making (credit analysis, mortgage risk, project
management, investment portfolios, price analysis, and
corporate bankruptcy). While in Burrell and Folarin (1997)
are mentioned applications in other specific areas (financial
analysis, corporate bankruptcy, risk assessment, stock mar-
kets forecasting). There is also another available simplified
classification in three groups: credit assessment (credit rat-
ing, credit risk, and bond pricing), portfolio management
(optimal portfolio selection, and portfolio selection) and
forecast and planning (predicting corporate bankruptcies;
see Bahrammirzae, 2010). Yet, one of the most attractive
applications in finance is forecasting financial time series,
especially stock indices and exchange rates; in this regard,
several investigations consider stock indices and exchange
rates as indicator for the future conditions of the economic
and financial system.

Since their application in finance in the early 90’s, the
ANNs have become popular, partly because they are con-
sidered as non-parametric models from a statistical point
of view. This feature makes them quite flexible in model-
ing real-world phenomena where observations are gener-
ally available, but there is not a theoretical relationship or
specification, especially for non-linear functions (Haykin,
1994; Mehrotra et al. 2000).

One of the most known networks is the MLP, which
is characterized for being a universal approximator and
classifier. The construction of the MLP for financial and
economic series forecasting is described in Kaastra and
Boyd (1996) and Mehrotra et al. (2000). Also, the ANNs
performance has been compared with traditional models
in finance in Burrell and Folarin (1997), Hamid and Iqbal
(2004), Khashei and Bijari (2011), McNelis (2005), and Pali-
wal and Kumar (2009). When performance focuses on the
various fields of AI in finance applications, see, for in-
stance, Bahrammirzaee (2010) and Rada (2008).

Unlike previous studies, which analyze the perfor-
mance of various networks with traditional models in
many areas, this research makes a comparison among dif-
ferent types of networks to forecast particularly stock in-
dices (or stocks) and/or the exchange rates. In general, we
can identify about five groups of networks used as approx-
imators and/or classifiers: (1) Feedforward Networks, like
MLP, (2) Recurrent Networks, (3) Polynomial Networks,
(4) Modular Networks, and (5) Support Vector Machine. In
this paper, we shall analyze several research works that ap-
ply the MLP and other type of network for the stock indices
and/or the exchange rate. The objective is to assess the
performance when applying different types of networks in
relation to MLP.

The research is organized as follows. In section 2, we
introduce the MLP. In section 3, we present an overview of
each networks group. In section 4, we carry out a compar-
ative analysis of the ANNs. In section 5, we assess the per-
formances of ANN in terms of their result in applications
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taking as a benchmark the MLP. In section 6, we present an
application. Finally, in section 7, we conclude.

2 The Multilayer Perceptron

The neuron (or node) is the basic unit of a neural net-
work. In the case of the MLP, it includes an input layer
(that does not do any processing), one output layer and at
least one hidden layer. The layers consist of a set of nodes;
in the case of the hidden layer its inputs come from units
in the previous layer and send its outputs to the next layer.
The input and output layers indicate the flow of informa-
tion during the training phase where the learning algo-
rithm is implemented. The MLP generally learns by means
of a backpropagation algorithm, which is basically a gra-
dient technique. It has also been implemented variants of
the algorithm to work on the problem of slow convergence
(for example, momentum term, see Haykin, 1994). Once
the trained process is carried out, the network weights are
frozen and can be used to compute output values for new
input samples. In what follows, we provide a brief expla-
nation of the backpropagation algorithm.

The network learning is a process in which the weights,
w, are adapted by a continuous interaction (k) with the en-
vironment, in such a way that

wnj(k + 1) = wnj(k) + ∆wnj(k)

where w(k) is the previous value of the weight vector and
w(k + 1) is the updated value. The learning algorithm is
a set of rules to solve the learning problem and determine
the values wnj(k).

One of the most important algorithms is that of the er-
ror correction. Consider the n-th neuron in the iteration.
Let yn be the response of this neuron; x(k) is the vector of
environment stimuli, and {x(k), dn(k)} is the pair of train-
ing. Define the following error signal equation:

en(k) = dn(k)− yn(k)

The objective is to minimize the cost function (criterion)
which takes into account this error. After selecting the cri-
teria, the problem of error correction learning becomes one
of optimization. Consider a function ǫ(w), which is a con-
tinuously differentiable function of a weight vector. The
function ǫ(w) transforms the elements from w to real num-
bers. We need to find an optimal solution w∗ that satisfies
the condition:

ǫ(w∗) ≤ ǫ(w).

Then it is necessary to solve an optimization problem with-
out constraints posed as: the cost function minimization
e(w) with respect to the weight vector. The necessary con-
dition for optimality is given by:

∇ǫ(w∗) = 0

where ∇ is the gradient operator. An important class of
optimization algorithms without constraints is based on
the idea of iterative descent (gradient descent method and

Newton’s method). Starting with an initial condition w(0),
it generates a sequence w(1), w(2), . . ., such that the cost
function ǫ(w) decreases in every algorithm iteration. It is
desirable that the algorithm eventually converge in to the
optimal solution in such a way that

ǫ(w(k + 1)) < ǫ(w(k))

In the descent gradient method, the successive adjustments
are applied to the weight vector, in the direction of the gra-
dient descent. For convenience, we will use the following
notation:

g = ∇ǫ(w).

The gradient descent algorithm can be written formally as:

w(k + 1) = w(k)− ηg(k)

where η is a positive constant called the learning rate, and
g(k) is the gradient vector evaluated at w(k). Therefore, the
correction applied to the weight vector can be written as:

∆w(k) = w(k + 1)− w(k) = −ηg(k).

This method converges slowly to an optimal solution w∗.
However, the learning rate has a larger impact on this con-
vergent behavior. When η is small, the path of w(k), over
the plane W is smooth. When η is large, the path of w(k)
over the plane W is oscillatory, and when η exceeds a cer-
tain critical value, the path w(k) over the plane W becomes
unstable. Thus, the backpropagation algorithm is a tech-
nique to implement the method of descent gradient in a
weight space for a multilayer network. The basic idea is
to efficiently calculate the partial derivatives of an approx-
imate function of the behavior by the neural network with
respect to all the elements of the adjustable vector of pa-
rameters w for a given value of the input vector x.

3 Types of ANNs

The specialized literature identifies several groups of
networks used as approximators and/or classifiers. This
section provides a classification in terms of the general
characteristics of the ANNs.

1. In the first group, we can find the Feedforward Net-
works (FFNs), like MLP. Its main feature is that their
connection is forward so they do not establish any con-
nections between the nodes on the same layer or pre-
vious nodes. The networks that share this feature are:
The Radial Basic Function (RBF) (Bildirici et al. 2010;
Dhamija and Bhalla, 2011; Cheng, 1996); the General-
ized Regression Neural Network (GRNN) (Enke and
Thawornwong, 2005; Mostafa, 2010); the Group Method
of Data Handling Network (GMDHN) (Pham and Lui,
1995); the Probabilistic Neural Network (PNN) (Enke
and Thawornwong, 2005; Thawornwong and Enke,
2004); the Dynamic Neural Network (DNN) (Guresen,
Kayakutlu and Daim, 2010) and the Cerebellar Model
Articulation Controller (CMAC) (Chen, 1996).
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2. In the second group, we can locate the Recurrent Net-
works (RCNs) that are characterized by the dynamism
of their connectivity, so these networks stores informa-
tion that will be used later. The networks that share this
feature are: Elman Network (ELN) (Kuan and Liu, 1995;
Selvaratnam and Kirley, 2006; Sitte, 2002; Yumlu et al.
2005); the modifications to Elman network (Kodogian-
nis and Lolis, 2002; Perez-Rodriguez et al. 2005); Par-
tially Recurrent Networks (PRN) (Kodogiannis and Lo-
lis, 2002; Perez-Rodriguez et al. 2005) and Autoregres-
sive Networks (ARN) (Kodogiannis and Lolis, 2002).

3. Through the third group, we can find the Polynomial
Networks (PLNs) which typically offer efficient pro-
cessing of polynomial input variables, otherwise if we
would apply the sigmoidal or gaussian functions in the
training, although it would be exhaustive. The networks
that share this feature are: Pi-sigma networks such as

Ridge Polynomial Networks (RPN) and its dynamic ver-
sion (Ghazali et al. 2007, 2009 and 2011), as well as the
Function Link Network (FLN) (Hussain et al. 2008).

4. In the fourth group are the Modular Networks (MNs)
that consists of various modules (networks) which al-
low solving tasks separately and then combining the an-
swers in a logical manner. One possibility is to use dif-
ferent network architectures (Zhang and Berardi, 2001)
and another alternative is to apply different initializa-
tion weights leaving the same network architectures
(Adeodato et al. 2011; Zhang and Berardi, 2001).

5. Through the fifth group, we can find the Support Vec-
tor Machine (SVM), this network belongs to the kernel
base models or nucleus. The idea is to construct a hyper-
plane as a decision surface which maximizes the margin
of separation (Carpinteiro et al. 2011; Kara et al. 2011;
Shen et al. 2011).

MLP ELN

MDNs DRPNN

 

 

 

. 

Figure 1. Some neural networks applied in stock market and exchange rate forecasting. Source: author elaboration.

4 A comparative Analysis of ANN

In this section is exposed the main characteristics of the
ANNs. All these characteristics (o properties) take as a ref-
erence point the MLP:

a) Because MLP does not have a dynamic structure, RCNs
are proposed as an alternative. Therefore, the ELN
could have a better performance than that of the MLP
(Perez-Rodriguez et al. 2005; Selvaratnam and Kirley,
2006; Sitte, 2002). However, in the ELN all nodes are
connected to other nodes can make the training diffi-
cult, another proposal is the PARN (Kodogiannis and
Lolis, 2002; Perez-Rodriguez et al. 2005) or the ARN in

which case a more efficient training is expected (Kiani
and Kastens, 2008; Kodogiannis and Lolis, 2002) this is
so because the nodes are connected by themselves.

b) To find the best network is usually based on trial and
error criteria, that is why this kind of methods waste
information and time (this usually reflects in unstable
forecasts) so using MDNs with different sizes of net-
works would avoid these selection process (Adeodato
et al. 2011; Zang and Berardi, 2001). Another proposal
is to apply the GMDHN which increases in size during
the training (Pham and Lui, 1995), or apply the DNN,
which increases the number of hidden layers dynami-
cally (Guresen, Kayakutlu and Daim, 2010).
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c) The sample is typically divided into two stages (train-
ing and testing). Furthermore, it is necessary to es-
tablish the number of nodes in the hidden layer be-
fore starting the training stage. An alternative to over-
come these problems is to apply the GRNN, because it
does not require estimating the number of nodes in the
hidden layer and all the available information can be
used for the network training, therefore no early stop-
ping technique is required during its training (Enke
and Thawornwong, 2005; Leung et al. 2000; Mostafa,
2010). Also the DNN or the PRNN do not need train-
ing or early stopping techniques (Enke and Thaworn-
wong, 2005; Thawornwong and Enke, 2004).

d) In the MLP the processing nodes are located in the hid-
den and output layers sharing the same type of pro-
cessor (using it as a classifier, the processing nodes are
non-linear, but as an approximator the output node is
linear), while in the RBF the nodes in the hidden layer
have certain properties that help to different learning
purposes, which could provide a more accurate fore-
cast (Hutchinson, Lo and Poggio, 1994), or the SVM, in
which the choice of kernel function is a critical decision
for prediction efficiency (Kara et al. 2011).

e) During the training all weights are modified, and
therefore, learning is slow. In contrast, RPNN have
only one set of weights in the layer to train, which facil-
itates the learning process (Ghazali et al. 2007, 2009 and
2011). Another possibility could be the FLN (Hussain
et al. 2008) or the Partially Connected Network (PCN),
which selects the connection between nodes randomly
(Chang et al. 2012).

f) In the MLP, it is necessary to define the range in the ini-
tialization weights (usually very small) however, there
is no consensus for specific applications so it is usu-
ally chosen at the designer’s discretion or having as a
reference similar applications. An alternative to this
limitation is to apply MDNs that share the same net-
work architecture but different ranges in the initializa-
tion weights (Adeodato et al. 2011; Zang and Berardi,
2001).

g) The MLP employs an algorithm which is basically a
gradient technique. It implies that the problem is non-
convex and its solution is a local minimum. SVM uses
the structural risk minimization theory so the problem
is a convex optimization problem, which means that
the optimal solution is global (Ince and Trafalis, 2006).

h) The MLP is characterized by more learning interfer-
ence for inputs distant from any training vector. A so-
lution for this problem is to use CMACN, which can
get one-step learning where MLP cannot (Lu and Wu,
2011).

5 Applications and Performance of

ANN

In what follows, Table 1 summarizes the information
according to the previous classification. On the basis of
the obtained results in thirty reviewed papers, we observe
that more than 40% of the analyzed researches support the
idea that the MLP is the best network or at least it has the
same performance with respect to the proposal networks.
With regard to the investigations that were in favor of other
models (e.g. econometrics models) (Kodogiannis and Lo-
lis, 2002; Yumlu and Gurense, 2005), we excluded them,
and analyzed only the performance of the different pro-
posed networks, but none of the cases the MLP stands.

The main idea of this review is to point out the advan-
tages and delimitations of the MLP with respect to other
available networks by comparing not only the learning
process, but also the architecture design. The issue of the
type of connections between the nodes (like RCNs suggest)
could not be so successful in several applications. The main
drawback associated with RCNs is that they need more
time to learn than the standard networks because their out-
puts pass through the network more than once (depending
on the type of the RCNs) before the final output. Another
issue is if apply or not in a network some optimization
technique, like in SVM, instead of gradient technique.

The types of networks that have shown superiority
over the MLP are the RBF, GRNN, MDNs and DRPNN.
Both RBF and GRNN are FFNs. In these types of networks
the training may be in terms of global or local basis func-
tions. The MLP applies a global basic function (usually
sigmoidal), and this function have non-negligible values
throughout all measurement space, so many iterations are
required to find a combination that has an acceptable error
in all parts of the measurement space for which training
data are available. On the other hand, GRNN and RBF are
based on a localized basic function, which provides an im-
portant advantage of instant learning. The GRNN is based
on the estimation of probability density functions, and RBF
is based on iterative function approximation. Although,
PRNN and GRNN are based on the estimation of probabil-
ity density functions, the reason that GRNN and RBF out-
perform in compared with PRNN could be the used of the
regression method (Chen, 1996).

The fact that the MDNs perform better than the MLP is
because they are more precise techniques for the initializa-
tion weights, but when MDNs mix different architectures
sharing the weights range, the result is poor. In the case of
the DRPNN with respect to MLP, they have only a single
layer of learnable weights, so it will reduce the network
complexity. Therefore, PLNs are appropriated when the
number of inputs to the model and the training becomes
extremely large, so the training procedure for ordinary net-
works like MLP becomes very slow. The fact that some dy-
namic versions succeed (although it implies more connec-
tions) is because their architecture is very simple. Another
case (isolated) is the CMAC that performs better than MLP
or RBF, so MLP cannot elude the problem of slow learning.

Analíti ka, Revista de análisis estadístico, 3 (2013), Vol. 6(2): 7-15 11



Elsy Gómez-Ramos y Francisco Venegas-Martínez

Analíti ak
6Revista de Análisis Estadístico

Journal of Statistical Analysis

Table 1. Application of different networks for the stock market and the exchange rate. Source: author elaboration.

Year Author(s)
ANNs

Resultsa
1 2 3 4 5

MLP RBF Others RCNs PLNs MDNs SVM

Exchange rate

2011 Dhamija & Bhalla × × RBF performs better
2010 Bildirici et al. × × × RBF performs better
2009 Ghazali et al. × × PLNs & MLP perform better
2008 Kiani & Kastens × × RCNs perform better
2008 Hussain et al. × × Same performance
2007 Ghazali et al. × × PLNs performs better
2007 Portela et al. × × MLP performs better
2006 Ince & Trafalis × × SVM performs better
2002 Kodogiannis & Lolis × × × RCNs perform better
2001 Zhang & Berardi × × MDNs perform better
2000 Leung et al. × × Others performs better
1995 Kuan & Liu × × Small differences
1994 Pham & Liu × × × MLP & others perform better

Stock market

2012 Chang et al. × × Others perform better
2011 Shen et al. × × × RBF performs better
2011 Lu & Wu × × × × Others perform better
2011 Kara et al. × × MLP performs better
2011 Carpinteiro et al. × × SVM performs better
2011 Guresen et al. × × MLP performs better
2010 Mostafa × × Others performs better
2005 Enke & Thawornwong × × MLP performs better
2006 Selvaratnam & Kirley × × Same performance
2005 Yumlu et al. × × RCNs perform better
2005 Pérez et al. × × MLP performs better
2004 Thawornwong & Enke × × MLP performs better
2002 Sitte × × Same performance
2000 Leung et al. × × Others perform better

Both

2011 Adeodato et al. × × MDNs perform better
2011 Ghazali et al. × × PLNs performs better
1994 Hutchinson, Lo, & Poggio × × MLP & RBF perform better
aThe results are based on the author’s criterion for the multilag forecast

The above results suggest that, in general, the basic
functions, the initialization weights, and the network ar-
chitecture will produce a path that concentrates great ef-
forts. These issues have already been established by other
authors who seek through intelligent methods (e.g. ge-
netic algorithms) to improve the performance of the MLP,
especially with the network architecture and initialization
weights (Hansen and Nelson, 2003; Karathanasopoulos et
al. 2010). With respect to the basic function, the literature
in finance does not discuss this task with respect to GA or
another methodology (or we did not find it). As a con-

clusion, we should not suggest complicated networks, in
some cases, the simplicity is the best.

6 The IBM case
In this section we apply the MLP to the IBM case. To do

this, we will focus on the IBM daily common stock returns
from January 02, 2003 to May 05, 2013 (see Figure 2). Data
consisting of 2592 days will be used for training and the
last 10 days for testing (or forecast period). The software to
be used is Mathematica 6.0.
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Figure 2. IBM daily closing prices and returns. Source: Econo-
matica.

Step 1: Parameter values. The optimal values of the pa-
rameters depend on the application and they are not easy
to determine a priori. In this case, they are chosen according
to similar studies η = 0.3 and the momentum term = 0.2
(Pérez-Rodríguez et al. 2005; Theofilatos et al. 2010).

Step 2: Size of the training. According to the desired ac-
curacy on the test set, it is suggested that

P ≥ |w|
1 − a

log
n

1 − a

where P denotes the size of the training set, |w| denotes the
numbers of weights to be trained, a stands for the expected
accuracy on the test (in our case, the value is given by 0.95),
and is the number of nodes (Mehrotra et al. 2000).

Step 3: We now analyze the error among the different net-
work architectures. The empirical evidence suggests that
when the size of the networks is increasing, the training
performance improves; however, if the one-lag and multi-
lag performances deteriorate, the networks are oversized.
The process may stop (e.g. establish an acceptable error) or
continue until it is found the “best” network. If the last pro-
cedure is chosen, we can compare the training error with
the forecast error (one-lag testing + multilag testing) and
choose the network just before the forecast error increases
according to the training error.

In Table 2 is presented the mean squared error from dif-
ferent network architectures. The first column contains the
training error which decreases when the size of the net-
work increases. The last column contains the forecast error
which is always bigger than the training error but at some
point the forecast error begins to have a greater difference
in relation to the training error, which is shown in Figure
3. At this point the training error continues decreasing be-
cause the network is larger than required so the network
memorize information and gradually lose the ability to re-
spond to new information (forecast error). According to
the obtained results the “best” network architectures is 6-
8-1 (the series is roughly explained from the lag number 6
with 8 hidden layers) with a training error of .000486 and a
forecast error of .000507 while the remainder of the results
are discarded (a lot of time and information is wasted).

Table 2. Mean Squared Errors. Source: author elaboration.

1 2 1+2
Network

architecturesa Training One-lag Testing Multilag Testing Forecast error

3

2-1 .006402 .007236 .005764 0.006500
3-1 .004078 .004721 .003574 0.004148
4-1 .002949 .003478 .002522 0.003000
5-1 .002322 .002794 .001945 0.002370
6-1 .001907 .002342 .001567 0.001955
7-1 .001619 .002010 .001306 0.001658

4
6-1 .001457 .001838 .001161 0.001500
7-1 .001243 .001591 .000971 0.001281

5
6-1 .001182 .001520 .000917 0.001219
7-1 .000735 .000996 .000529 0.000763

6 8-1 .000486 .000692 .000322 0.000507

7
9-1 .000336 .000505 .000321 0.000413

10-1 .000268 .000414 .000319 0.000367

8 10-1 .000254 .000397 .000308 0.000353

10
9-1 .000250 .000391 .000276 0.000334

10-1 .000189 .000307 .000264 0.000286
11-1 .000165 .000274 .000235 0.000255

aInput-hidden-output nodes
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Figure 3. Training and forecast errors. Source: author elaboration.

7 Conclusions

This paper carried out an exhaustive review of the spe-
cialized literature on ANNs and made a comparative anal-
ysis according to their performances in forecasting stock
indices (or stocks) and exchange rates. In this regard, it
is important to point out that the MLP is one of the most
used networks in finance, because it is a feedforward mul-
tilayer network with non-linear node functions. In order to
support this, we have reviewed thirty applications in the
literature. We found that more than 40% of the analyzed re-
searches support the idea that the MLP is the best network
or at least it has the same performance with respect to the
proposal networks. However, it is shown that the MLP has
important delimitations in several respects: network ar-
chitecture, basic functions and initialization weights. One
way to improve the performance of the MLP is to apply
intelligent methods. As a result we get a hybrid network
which is expected to provide a more accurate forecast.
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