
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-13-

Abstract — The requirements engineering phase is the

departure point for the development process of any kind of

computer application, it determines the functionality needed in

the working scenario of the program. Although this is a crucial

point in application development, as incorrect requirement

definition leads to costly error appearance in later stages of the

development process, application domain experts’ implication

remains minor. In order to correct this scenario, business process

modeling notations were introduced to favor business expert

implication in this phase, but notation complexity prevents this

participation to reach its ideal state. Hence, we promote the

definition of a level oriented business process methodology, which

encourages the adaptation of the modeling notation to the

modeling and technical knowledge shown by the expert. This

approach reduces the complexity found by domain experts and

enables them to model their processes completely with a level of

technical detail directly proportional to their knowledge.

Keywords — Business Process Modeling, BPMN, process

transformation, code generation.

I. INTRODUCTION

oftware development has seen some great changes in some

of its methodologies and techniques, but some of its

problems have remained unchanged since their appearance

in the mid and late twentieth century. One of these lasting

problems is related with requirements engineering, aspect of

the software development process that has seen very little

evolution. Sommerville and Kotonya stated in their study [1]

that there are several problems related with this initial activity

of the software development process. The first problem

mentioned is that the requirements engineer is not an expert in

the application domain being addressed. Another of the

difficulties present in this phase of the software development

cycle which is also mentioned by these two authors is the fact

that natural language is ambiguous, which has also been

confirmed by the work of Laue and Gadatsch [11].

This work has been partially funded by the Ministry of Industry, Energy

and Tourism of Spain, by the Avanza2 plan and by the European Regional

Development Fund through the project “GADE4ALL: Plataforma genérica

para facilitar el desarrollo de videojuegos y software de entretenimiento

multiplataforma”. The code for the project is MITC-11-TSI-090302-2011-11.

The Business Process Management Initiative (BPMI) [24], a

group inside the OMG [23], proposed a solution for this

problematic situation: Business Process Modeling (BPM), a

discipline promoting the implication of the domain experts in

the requirements engineering process through the use of a

modeling notation that lies between the domain experts’

language and the computer experts’ knowledge. In its

proposal, the BPMI introduced Business Process Modeling

Notation (BPMN) [25] as the standard notation for BPM.

Although their intention was different, this standardization

made the notation grow in size and complexity to the point

where non-technical domain experts must undergo a training

process in order to understand it and use it properly [5].

Due to this circumstance, some simplifications of BPMN

have been conceived, with different success degrees; one of

these simplifications is Simple BPMN (SBPMN) [6], defined

during previous work at the University of Oviedo with the

following objectives: reduce the number of symbols needed to

model a process and raise the user’s level of abstraction.

SBPMN was used to generate applications in a similar

scenario to the one presented in this paper [20], although in

that case several adaptions of the model were necessary for the

code to be generated. The results obtained by SBPMN in the

tests carried out were satisfactory but we consider the number

of symbols it offers to be too large for non-technical domain

experts. In order to solve this situation our first objective is the

definition of a BPM level oriented methodology, a system that

enables the adaptation of a graphical modeling notation to the

skill level presented by the business expert.

In order for our approach to be used in real scenarios we

need to achieve two other objectives: encourage business

experts to model their processes and enable quick generation

of the applications supporting the models created by the

experts. We intend to complete these two goals with the

definition of two separate but closely related tools: BPLevel

Modeler and BPLevel Generator. BPLevel Modeler is a

business process modeling tool which supports the level

oriented methodology and promotes the involvement of

business experts in the requirements engineering process

through a simple and intuitive user interface. On the other

hand, BPLevel Generator is capable of analyzing the models

created with BPLevel Modeler and generate a specific and

custom application for each model; in this case the tool is

BPLOM: BPM Level-Oriented Methodology

for Incremental Business Process Modeling and

Code Generation on Mobile Platforms

Jaime Solís-Martínez, Natalia García-Menéndez, B. Cristina Pelayo G-Bustelo and Juan Manuel

Cueva Lovelle

Department of Computer Science, University of Oviedo, Spain

S

DOI: 10.9781/ijimai.2013.222

-14-

aimed at the computer experts in charge of developing the

applications in each scenario.

A summary of the structure of our proposal is shown in Fig.

1, where the whole modeling and code generation process can

be overviewed; as it is seen, business experts will be able to

create their models through the use of our modeling software

and the models generated will be handed to the corresponding

IT technicians who will generate the custom applications using

our code generation tool. These computer experts will also be

involved in the configuration of the XML file containing the

graphical details of the custom application, which at this

moment needs to be done manually.

Fig. 1. Graphical overview of BPLOM use scenario

The rest of this paper will be structured as follows: section

II will describe some of the existing BPM notations and

establish the difficulties that non-technical domain experts

undergo when using them. Section III will introduce our BPM

level-oriented methodology and the results obtained by its

initial level in a real scenario at a Spanish enterprise, where

business experts used the initial level of our methodology for

modeling their processes. In section IV we will present our

tools, starting with BPLevel Modeler and continuing with

BPLevel Generator and its intended use. Lastly, in section V,

we will identify our conclusions and section VI will establish

the future work we intend to carry out in order to improve not

only our tools but also our methodology.

II. BPM AND BUSINESS PROCESS MODELING NOTATIONS

BPM is an initiative that encourages domain experts to

define their business processes through modeling notations as

a way of reducing the difficulties found in the requirements

engineering process. This approach is based on the use of

notations that are half way between the domain experts’

language and the computer experts’ knowledge.

There are, mainly, two types of business process modeling

notations: graphical notations and textual notations. Bearing in

mind our current application scenario, we have studied what

we consider to be a representative set of notations that meet all

of the following factors:

 High degree of diffusion, including in our revision

those notations with higher diffusion degree.

 Wide range of complexity, from the most complex

example (BPMN) to the simplest one (SBPMN).

 Domain expert implication, factor which rules out

textual notations as a suitable modeling alternative.

As stated by Lu and Sadiq [10], graphical notations

allow users to represent business processes through

simpler semantics and more abstract syntax,

circumstance that lowers the complexity domain

experts experience during the modeling and

verification of the processes.

A. BPMN: the standard notation

BPMN is the standard notation for business process

modeling. It was proposed by the BPMI in 2004 and since

then it has undergone periodical revisions, being at the time in

its 2.0 version. It is the most widely use notation of this type,

with more than 70 implementations nowadays.

The two objectives that where stated as principal goals for

BPMN in the introductory document written by Stephen White

[2] where the following: provide domain experts an

understandable and usable notation and reduce the number of

existing notations and modeling tools.

1) BPMN’s features

BPMN’s root element is the Business Process Diagram

(BPD), which is composed by a set of activities that represent

the actions present in the business process and a group of flow

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-15-

controls entities that establish the order in which these

activities are done. The models built with BPMN can be

enriched with other elements such as events, choreographies,

messages, lanes and pools. BPMN’s elements can be divided

into the following categories: activities, gateways,

conversations, choreographies, events, swimlanes and data.

The number of elements present in the BPMN specification

is large, circumstance explained by the standard category of

the notation. Version 1.1 of BPMN consisted of 52 different

elements whilst the actual 2.0 version has seen an increase in

this feature, as it can be seen in the BPMN 1.1 and 2.0 posters

linked in the BPMN web page [25].

2) BPMN’s disadvantages

The main issue regarding the use of BPMN when dealing

with non-technical domain experts for process modeling is its

complexity.

Wahl and Sindre have confirmed this fact in a study [5]

where they state that a non-technical expert will need training

in order to be able to use BPMN in a correct way. This

complexity can also be seen in the investigation carried out by

Recker in 2007 [7], where through the answers of 590 BPMN

users he has been able to establish that there are several

entities in BPMN that receive very little use. This fact can be

seen in Fig. 2, a graphic classification of BPMN entities based

on the use they receive obtained from the results presented in

the referred work. The entities in BPMN are classified into

three different categories: important, sometimes used and

unused.

Fig. 2. Graphical representation of BPMN symbol importance obtained in

Wahl's and Sindre's work

Stephen White and Miers also mention BPMN’s complexity

in their BPMN reference guide [8]. In one of the sections of

the book they point out that it is not likely for a business

analyst or end user, who can also be referred to as a

application domain expert, to need all the symbols included in

BPMN.

Another issue concerning the usage of BPMN by non-

technical domain experts is the great number of BPMN

supporting tools that exist actually. Although one of the

objectives stated in the presentation of BPMN [2] was to

reduce the number of tools with support for BPMN, the

situation has gone the other way; this circumstance can be

confirmed by a study carried out in 2010 [13] where it is stated

that the popularity of BPMN has encouraged the appearance of

a greater number of modeling tools with support for the

standard. The magnitude of this problem seems to increase

when the differences between the tools are notable due to the

interpretation of the standard made by the authors and the

different approaches that lead to including BPMN entities to

the tool or not.

B. UML Activity Diagrams

UML Activity Diagrams, which can also be referred to as

UML AD, are one of the types of diagram included in the

Universal Modeling Language (UML) [26] specification.

The Activity entity, which represents the different actions

that have to be carried out during the execution of the process,

is the base of this type of diagrams. The activity entity is

accompanied in these diagrams by other artifacts like decisions

and parallel activity execution syntax. Although UML AD

include entities present in the other business process modeling

notations, a study [4] referenced in our analysis establishes

that UML AD are less expressive than BPMN.

Even though UML AD do not include such a great amount

of entities as BPMN, fact which enables a reduction of the

complexity found when modeling business processes, there are

some issues regarding the graphical representation chosen for

them. This circumstance is triggered by the fact that some of

the entities included in the specification share the same

graphical representation. For example, the decision entity is

represented in the same way as the merge entity, situation that

can lead to problems for the understanding of the model by the

non-technical domain experts. This circumstance can be seen

in Fig. 3, which shows a sample UML Activity Diagram

process.

Fig. 3. UML AD sample process diagram

The other aspect that encourages us to avoid using UML

AD as a valid notation for process modeling by non-technical

domain experts is its abstraction level. As UML is a general-

purpose language, UML AD offers the user a very low

abstraction level. This aspect goes against one of the main

goals in this investigation: usability experienced by non-

technical domain experts.

C. jPDL, process modeling language in Java

jPDL, which stands for Java Process Definition Language, is

a graphical language for business process definition included

-16-

in jBoss jBPM [27], a BPM suite written in Java for applying

BPM under this platform.

This language appeared as a simplification of BPMN via two

different approaches: reducing the number of entities available

for the definition of the process and modifying some of the

graphical representation of the entities through a color code.

As a result of the appliance of these approaches, jPDL has

managed to offer a lower complexity level than BPMN and has

also achieved an increase in the user’s level of abstraction. Fig.

4 shows a sample process diagram built using jPDL, where the

color code can be appreciated as the main difference between

this diagram and the one generated with UML AD.

An example where jBPM is used to increase the level of

automation of the business processes can be found in the work

done by Castaño [21]. Having correctly identified the suite’s

capability for adapting to nearly all business process, Castaño

introduces a prototype using jBPM that enables further

automation of business processes through the use of data

mining. Via this solution, the dependency that some processes

may have with human interaction can be reduced.

Fig. 4 jPDL sample process diagram

 Although the inclusion of this color code favors the

comprehension of the models built with jPDL and despite the

fact that this language has managed to reduce the number of

entities offered by BPMN, we consider that jPDL is not

suitable for our investigation. Our main concern regarding

jPDL is the user’s level of abstraction, as there are two aspects

related with the activity entity that make it low: on one hand,

the fact that there are various types of activities which have

high technical content (the script task, for example) and, on the

other hand, the need to edit under some circumstances the

XML code behind the graphical representation of the business

process in order to configure some of its details.

D. Petri nets, another option for process modeling

Petri Nets [14], defined by Carl Adam Petri in the mid

twentieth century, are another option to be considered when

dealing with process modeling. There are several features that

make Petri Nets suitable for this task, as stated by van der

Aalst in his study [15]:

 Formal semantics, which enable the precise and clear

definition of process models.

 Graphical nature, which promotes process definition

through the use of nodes and transitions.

 Expressiveness, as they support all the primitives used

when defining processes.

 The existence of many analysis techniques that can be

applied to them. These techniques can be used to

evaluate properties and also to calculate performance

rates.

 Platform independency, as Petri Nets are not based on

any proprietary software.

Despite these properties Petri Nets have and although they

can be defined graphically, there is great concern when

introducing them to non-technical domain experts: their

complexity and low level of abstraction. These two

inconveniences are against our usability and business expert

focuses so we have decided to avoid using Petri Nets in our

scenario, although we think they are suitable for completing

modeling tasks under other use circumstances.

E. SBPMN: Simple BPMN

Simple BPMN, also referenced to as SBPMN [6][20], is a

reduction of BPMN attempted as a previous investigation of

components in our group at the University of Oviedo [28].

SBPMN arose as a possible solution to the problems found

with the abstraction and complexity levels of the notations

previously presented in this paper. One of the objectives of

SBPMN was to reduce the technical knowledge level needed

to complete the modeling of a business process by the domain

expert. It also tries to avoid the arbitrary use domain experts

give to some of the symbols present in BPMN.

Fig. 5. SBPMN sample process diagram

Fig. 5 shows a sample SBPMN diagram representing the

process used to make a trip reservation. As it can be seen,

SBPMN offers different graphical representation of some of

the entities it borrows from BPMN, which makes the process

more intuitive for the user and simpler to understand.

The graph presented in Fig. 6 shows a graphical summary of

the results obtained by SBPMN in the tests that were carried

out after its definition. These results show that percentage of

errors or failures made by domain experts when using SBPMN

was less than when using BPMN, showing a reduction rate

greater than 20%. This error reduction implies that the skill

level shown by the users raised considerably when using

SBPMN (more than 80% of skills shown) compared to BPMN

(less than 50% of skills shown).

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-17-

Fig. 6. Comparison of skills and failures between BPMN and SBPMN

The results shown establish that SBPMN is simpler than

BPMN for non-technical domain experts when modeling their

business processes. The problem concerning this

simplification, despite the great effort shown in managing to

simplify process modeling to non-technical domain experts, is

the fact that the number of entities offered is still big and

sometimes can be too complex for non-technical experts; for

example, SBPMN proposes the use of various types of

activities (human task, simple task and automatic task) and

includes some entities with technical background like XML

schema data object and data source object.

III. BPLOM: BPM LEVEL ORIENTED METHODOLOGY

Until this moment, we have focused on analyzing several

notations based on their degree of diffusion and their

complexity. All of the notations presented have managed to

model processes correctly but there are several issues which

make us discard them as suitable for non-technical domain

experts: low abstraction level, big complexity in their use and

difficulty in understanding the models at first sight.

A common feature of all of these notations is to present the

user a set of entities to use, which cover the basic and the

advanced features that can be present in a process model. This

circumstance can bring problems to novice non-technical

users, as they face the use of complicated and technical

artifacts (like events, signals and data objects) that they may

not understand fully. This situation can also lead to misuse of

some of the entities in the language and, thus, to the

specification of a wrong model.

In order to prevent this situation, why not present the user a

set of entities that is capable of adapting to his modeling skills

and knowledge? This is the basic approach of our proposal: a

level-oriented methodology for the application of BPM to any

type of business process, promoting the adaptation of the

modeling entity set to the expert’s knowledge level. This

departure point differs from other business process modeling

notations like the one introduced by Chinosi and Trombetta in

the 2009 edition of the BPM Handbook [18]. The first stage of

the referenced methodology is based on reading the

documentation related to the process and creating a primary

sketched version of the process derived from the interpretation

a computer expert has of this documentation. Although this

approach could be valid, the ambiguous nature of natural

language [1][11] does not recommend it.

Our proposed methodology will be divided into 5

incremental levels. Level 0, also known as BPMN MUSIM

[16], will be the initial level and it will offer the minimum

number of entities needed for business process modeling.

Throughout the following levels we will be introducing more

artifacts like events or data objects to the methodology in

order for it to gain in expressiveness, trying to reach an

expressive power as similar as possible to that in BPMN. The

levels will be incremental, so the user will be able to model his

process using the entities contained in the current level in

addition to those contained in the previous ones.

This gain in expressiveness achieved when going up through

the levels is directly related to an increase in the complexity

users fin when using the symbols included in the methodology,

but as the higher levels are intended for more technical based

experts this complexity increase is manageable.

A. Features of the Methodology

The methodology we propose has some key features we

would like to point out. These are the following:

 Incremental nature of the levels, which allow the user

to model his processes with the entities that adapt to

his modeling skills and technical knowledge.

 All processes can be transformed to code and executed,

no matter in what level they are in.

 Platform independency. Despite the fact that we have

chosen .NET as the target platform in our study, this

approach could be used to generate code for any

other platform.

 BPM phase schema reduced. As the domain experts

are in charge of modeling the processes and these will

be used to generate code, there is no need to capture

requirements in text form and translate this text into

models. This enables the avoidance of common errors

in the requirements engineering process [1] and

reduces the 5-phase BPM application scenario

described by Ryan K. L. Ko [9].

B. Drawbacks of the Methodology

The main disadvantage of our methodology in comparison to

BPMN is its expressive power. Although our methodology

includes the majority of the artifacts and entities included in

the standard, some other components of it have been dismissed

due to different reasons (see discarded BPMN entities section

of this paper).

Despite this fact, we think the methodology is still capable of

modeling any type of business process completely and with no

need for any additional symbols, notwithstanding the

possibility of further extensions of the entity set available in

our approach.

C. Level Description

Once our proposal’s main features and limitations have been

introduced, the next step is to present each of the five levels

that make up our methodology. This presentation will be done

by introducing the symbols or entities present in each of the

-18-

levels with an explanation of their functionality and an

overview of their graphical representation.

1) Level 0: BPMN MUSIM

The first level of our methodology is called BPMN MUSIM

[16], which stands for very simple BPMN. As the basis of our

methodology, this level is intended for novice, non-technical

domain experts that want to model their processes through a

simple and clear notation. It contains the minimum set of

symbols needed for process modeling, 5 entities in total.

BPMN MUSIM’s main feature as an introductory modeling

artifact for novice, non-technical domain experts is the quick

and simple learning process domain experts undergo before

they start modeling with it.

a) BPMN MUSIM entity selection

As it was stated before, BPMN MUSIM is conceived as the

minimum set of symbols needed to define a business process

completely. The selection of the entities it includes has been

made following the results of several studies [3][7][9].

Particularly interesting are the results of the study carried out

by Recker in 2008 [3], which show, through the analysis of

several BPMN models, that there is a common subset of

entities that are present in the majority of BPMN models

produced by experts.

Fig. 7 shows a graphical recreation of the results obtained

by Recker in this study in the form of a set diagram. Each of

the boxes holds a group of entities of the BPMN symbol set

and a number indicating the amount of times these entities

appear together in the studied BPMN process models. For

example, 116 models have tasks and sequence flow entities in

common and 65 processes have these two entities and the start

and end events in common; the greater the number inside the

box, the greater the chance a business process model has of

containing all of the entities inside the box. As the graph

shows, the most commonly used symbols in BPMN are: tasks,

sequence flow, start event, end event, pools and gateways.

Based on this study and bearing in mind pools are mainly used

as the representation of the ownership a user has of the

business process, we believe 5 entities can compose the

minimum set allowing complete modeling of business

processes and thus we propose it to be the introductory level

for our methodology.

Fig. 7. Results extracted from Recker's 2008 study

b) Level 0 elements

The set of entities included in this level and their graphical

representation is the following:

 Starting point: All processes modeled with BPMN

MUSIM must have a single starting point that will be

represented by a green circle.

 Ending point: A process defined with BPMN MUSIM

can have one or more ending points, which represent

the end of the process. The ending point in BPMN

MUSIM will be a red circle.

 Activity: A rectangular shape with its name inside will

represent an activity.

 Transition: A transition represents the flow between

two elements of the model and will be represented

with an arrow. The arrow’s head will point the

direction of the flow.

 Decision: Decisions enable alternative taking in

business processes. A decision will be based in an

expression to decide upon and two branches: true and

false. A diamond shape will represent decisions.

Fig. 8. Graphical representation of BPMN MUSIM entities

The graphical representation of the entities in this level,

presented in Fig. X, was chosen due to the following reasons.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-19-

 The need to be close to the graphical representation

chosen by the OMG for BPMN. As the standard

notation, BPMN is widely used not only as it is but

also as the basis for other notations and tools (like

Microsoft Visio for example). For this reason, if we

define a similar graphical representation for our

initial level, user’s migration to our approach can

become a simpler task.

 We have defined first sight differentiable symbols for

each of the entities offered in our methodology in

order to avoid one of the problems found in UML

AD, where two artifacts shared the same shape and

this could lead to process experts misunderstanding

the models.

 As the coloring approach offered by jPDL seemed to

be generating more comprehensible models than

those obtained with black and white entity

representation, we decided to include color to our

shapes. In this way, we continued with the green and

red color code for representing starting and ending

points and also added colors to the other symbols.

 Recker, Safrudin and Rosemann studied novice user

modeling patterns in their work [12] and stated that

this type of users understand better models including

text and abstract symbols (circles, arrows and

rectangles) than those containing concrete figures.

c) BPMN MUSIM’s use in real life processes: examples and

results

BPMN MUSIM has been used for modeling two real life

processes in a Spanish enterprise, trying to demonstrate its

suitability for business process modeling.

In order to establish its skills for the modeling of any kind

of business process we decided to use BPMN MUSIM to

model the following processes: informatics incidence

management and recruitment, one of them close to computer

science and the other concerning non-technical aspects. Details

on the process models and other circumstances regarding the

application of BPMN MUSIM to this use case can be found on

the two articles [16][17] presented in 2011 at an Iberian

congress.

The scenario designed for the application of BPMN

MUSIM to these processes started with a brief meeting with

the domain experts, where they were introduced to the

notation: its entities, their meanings and the first modeling

exercises. Once the experts understood the language and were

capable of using it, an iterative meeting approach was taken:

each of the experts was addressed to come to a meeting with

the process models he had done and these would be reviewed

with the project’s team in order to spot the errors or

difficulties; when the review was complete, the expert was set

to correct the errors and another meeting was scheduled in the

following days in order to undertake further review. This

meeting schedule was repeated until the non-technical domain

experts marked the process models as definitive.

As the following figures show, BPMN MUSIM has

obtained good results in the aspects that were measured after

its introduction to the domain experts. In first place, users have

stated a better comprehension of the symbols in BPMN

MUSIM, as seen in Fig. 9; this circumstance is due to the

inclusion of the color code, which enables users to understand

models better at first sight. Results also point out, like it is

seen in Fig. 10, that the majority of the domain experts didn’t

spot the need for any additional symbols in BPMN MUSIM in

order to be able to model their processes completely.

The interpretation of these results allows us to think that

BPMN MUSIM symbols are easier to use than BPMN

symbols and that the proposed symbol set is sufficient for non-

technical experts to model their processes completely at a

basic or early stage modeling level.

Fig. 9. BPMN MUSIM and BPMN symbol simplicity comparison

Fig. 10. Pie chart representing need for additional symbols in BPMN

MUSIM

2) Level 1: Decision Extension

Once the basic symbols needed for process modeling have

been introduced, its time for increasing the expressiveness of

the methodology.

Fig. 7, which established the most widely used symbols in

BPMN diagrams built by domain experts, showed that the

main core of symbols are the ones included in BPMN MUSIM

and that these are followed by the use of more complex

decision entities. In order to follow the tendency pointed out in

this investigation carried out by Muehlen and Recker [3], we

have decided that the second level of our methodology is

going to be the decision extension.

-20-

a) Level 1 elements

The symbol set proposed as a decision extension for the

methodology is the following:

 Parallel decision: A parallel decision allows the

expert to define the execution of two simultaneous

paths inside the process. A yellow diamond shape

with a cross inside will represent it.

 Inclusive decision: Inclusive decisions enable the

activation of at least one of their branches, depending

on the incoming condition. A yellow diamond with a

circle inside will represent an inclusive decision.

 Join: The inclusion of these new decision types forces

the inclusion of the join entity, the point where the

process waits for the completion of the process’ paths

before moving forward to the next activity. A

horizontal line with two incoming transitions and one

outgoing transition will represent joins.

Fig. 11. Graphical representation of Level 1 entities

3) Level 2: Event Extension

Once the elements pointed out by Muehlen and Recker as

the most used in BPMN have been included in the

methodology, it is time to extend our proposal with other type

of artifacts provided by BPMN and which are intended for

more technical and experienced users.

BPMN gives a lot of importance to the events, entities that

reflect the appearance or occurrence of certain actions that

alter the normal process flow. The entities of this kind offered

by BPMN cover from messages to signals, without forgetting

others like time events and errors. With a closer look at the

BPMN 2.0 entity set, clearly represented in the BPMN 2.0

poster offered by the OMG [23], there is a main issue

regarding the event use in this version of the standard: each of

the events proposed in BPMN 2.0 has several graphical

representations depending on the place where they appear in

the model (beginning, intermediate and end) and if they

activate a subprocess or not.

In order to simplify the event model proposed by BPMN for

the non-technical domain experts and, at the same time, avoid

the appearance of different entities with similar graphical

representation, we propose another approach for event

modeling under level 2 of our methodology. We call this level

the event extension.

a) Level 2 elements

The entities included in the event extension of the proposed

business process modeling methodology are the following:

 Message event: This type of event allows the user to

include message receiving and sending inside a

process, enabling communication between different

processes and/or users. Messages will have two

graphical representations in this methodology: an

outgoing message will be represented by an envelope

with an arrow pointing up and incoming messages

will be represented by an envelope and an arrow

pointing down.

 Time event: A time event allows the definition of time

conditions inside a process, like the fact that a

process must wait for a certain activity to end before

continuing or also a time lapse. A clock will represent

time events.

 Error event: Error events define the place where a

process stops due to the appearance of an error,

ending the process’ execution immediately. Error

events will be represented by a prohibition signal with

the word “Error” inside.

 Cancelation event: Cancelation events represent the

moment where a process’ execution is cancelled. A

red colored cross will represent these events.

 Signal event: This event allows the user to send a

signal to another process in order for it to continue its

execution. It is directly related with the time events

presented before. A danger signal will represent

signal events in this methodology.

Fig. 12. Graphical representation of event extension entities

b) Using Events in the Models

Once the events have been introduced, there is the need to

explain how they can be used for process modeling. All events,

except cancelation and error events that need to appear just

before an ending point, can appear in any point of the process.

Events are artifacts that make the process stop until their

occurrence in order to continue normally. Thus, an event must

always appear after the activity that generates it and before the

entity whose execution it has to impact.

For example, if we need to model a process where an

activity causes the sending of a message and after the delivery

takes a decision we would have to place the activity first, then

the outgoing message entity and finally the decision. Making

the model like this will ensure the process will send the

message once the preceding activity has been completed and

also it will wait until the message is sent before going on to

taking the decision.

4) Level 3: Activity Extension

The fourth level of the proposed methodology is defined as

an activity extension for the proposal. Until this moment the

methodology only provided the user one type of activity,

which represented an automatic or user task.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-21-

However, as domain experts move along the levels of the

methodology they have more experience with the use of the

notation and also their processes need of more rich

constructions in order to be modeled precisely. Under these

circumstances, the activity extension of the methodology

introduces subprocesses and function calling to its artifacts.

a) Level 3 elements

The elements included in the activity extension of the

proposed methodology are the following:

 Call activity: A call activity references a global task

that is repeated throughout several processes. This

entity allows the user to call certain a certain task

without having to redefine it in each of the processes

it appears in; a common call activity could be user

identification or login. Call activities are represented

by the same entity as the normal activities but

including a world globe icon that identifies it as a call

activity.

 Subprocess: A subprocess is a set of activities that

need to be done without any interruption. If any of the

activities inside one subprocess produces an error, the

process will be terminated. A subprocess is

represented by a dashed rectangle that includes all of

the activities of the subprocess.

 Event subprocess: Event subprocesses are a special

type of subprocess, which is triggered after the

appearance of an event; it will behave identically as

the normal subprocess in case an error takes place. Its

representation is the same as the normal subprocess

one but the first entity of an event subprocess must be

an event (in the following image the event is an

incoming message event). The events available for an

event subprocess are: incoming and outgoing message

events, time events and signal events.

Fig. 13. Graphical representation of the activity extension elements

5) Level 4: Data Extension

The last level of this BPM methodology is defined as a data

extension. Until this level, the introduction of technical detail

in the models has been kept as small as possible in order to

preserve the expert from tying the model to any technical

aspect.

However, at this top level of the methodology the experts

are considered both experienced modelers and technically

prepared, so this status requires the introduction of data

elements that enable the definition of information structure and

flow through the processes. This detail is directly related with

technical application implementation details that are too

complex for the novice modelers using the lower levels of the

methodology.

a) Level 4 elements

The elements included in the data extension level of the

methodology are:

 Data object: A data object represents information that

flows through the process in different ways

(documents, data introduced in a form, etc.). A paper

sheet that represents information stored in a computer

defines a data object.

 Object collection: An object collection represents a

set of data objects that flows through the process, like

a list of documents for example. A stack of

documents, which establish that an object collection

is made up of multiple data objects, represents it.

 Warehouse: A warehouse represents the moment

where a process reads or writes data in a database.

This implies that data generated in a process and

passed to a warehouse survives the process’ instance.

The classical hard drive representation with the word

“Warehouse” inside will represent this entity.

Fig. 14. Graphical representation of Level 4 entities

6) Discarded BPMN Entities

As it has been seen in the presentation of the levels that

make up our methodology, there are several artifacts included

in BPMN that are not present in our proposal. As the results of

the referenced studies show [3][19] several of the modeling

entities offered by the standard business process modeling

notation experience little use.

-22-

Fig. 15. Results obtained by Chinosi and Trombetta in their work

Fig. 15, a representation of the results from Chinosi’s and

Trombetta’s study published in 2012 [19], shows a bar graph

with a measurement for the number of times each of the

represented BPMN constructs appear in the models included

in the study. As it can be seen, BPMN elements like

conversations, choreographies and pools, for example,

experience low use by modeling experts. Thus, we have

decided to exclude these symbols from this first version of our

proposed methodology. Although the results extracted from

this study differ in some of its figures from those obtained by

Recker [3], the similar low symbol usage trends allow us to

rule out some of the least used features found in BPMN.

At this moment we must establish that the exclusion of these

symbols is not a definitive decision. As it will be explained in

the future work section of this paper, we intend to make our

level oriented methodology undergo a thorough testing

procedure. One of the main goals of these tests would be to

determine the suitability of the selected symbol set for the

modeling of all types of business processes. With the results

obtained from the tests we will be able to determine the need

to include additional symbols to the methodology or discard

the inclusion of any other entity to our methodology.

7) Applying BPLOM to a business process

The initial level of BPLOM has been used to model real life

business processes at a Spanish enterprise called Isastur. The

business processes that were modeled represented to areas of

the enterprise with different characteristics: one was the

informatics incidence management process and the other was

the recruitment process.

This difference in characteristics allowed BPMN MUSIM to

be considered suitable for modeling different kinds of

processes and at this point we are going to use BPLOM to

represent a model from a completely different nature. In this

case we are going to use our level oriented approach to

illustrate a product catalog application, including the

possibility of buying the goods at the en of the process. The

different figures in this section will represent the aspect of the

process model as it passes through three of the levels in

BPLOM: level 0, level 2 and level 4. These levels have been

chosen because they correspond to the initial, middle and last

stages of the methodology.

Fig. 16. Level 0 catalog application process model

Fig. 17. Level 2 catalog application process model

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-23-

Fig. 18. Level 4 catalog application process model

Looking at the three precedent figures the evolution a

process undergoes when passing through the levels of our

methodology can be clearly seen. A BPMN MUSIM version

of the process is shown in Fig. 16. As it can be seen this

process contains no technical detail at all, as this level of our

methodology is targeted towards non-technical application

domain experts. Once the domain expert has gained some

experience with the initial level of the methodology, he would

start going up through the following levels, and thus an

increase in the number of entities available for modeling and

of the notation expressiveness would take place.

A non-technical expert with medium modeling skills would

have access to level 2 of the methodology and therefore would

design the process seen in Fig. 17. In this case, the inclusion of

the outgoing messaging events gives the process additional

functionality and shows the richer expressiveness of the

notation at this level.

The last process, shown in Fig. 18, represents the use a

business process modeling expert with some technical

knowledge would give to the methodology. For this particular

process the difference between the process models built with

level 2 and 4 of the methodology is the inclusion of the object

collection entities. This circumstance shows that the business

expert that modeled the process has some technical knowledge

as he manages to understand the concept of an object

collection.

IV. BPLOM TOOLS: BPLEVEL MODELER AND BPLEVEL

GENERATOR

As it was mentioned in the features section, BPLOM

enables the definition and execution of the processes modeled

with the proposed entity set. In order to achieve this

functionality, BPLOM requires the development of a couple of

prototypes that enable the digital definition and transformation

of the models. These prototypes have been called BPLevel

Modeler and BPLevel Generator.

Despite the platform independent nature of the proposed

methodology both prototypes have been built using Windows

Workflow Foundation. This is due to the degree of

customization that this platform offers for creating a modeling

tool like the one that will be introduced. The fact of using this

platform for creating our modeling tool has no effect on the

platform independency feature shown by the methodology, as

it will be explained later in this section.

A. BPLevel Modeler: Graphical Definition of BPLOM Models

BPLevel Modeler is a business process-modeling tool that

supports the BPM level methodology proposed in this paper.

This tool has been developed under the .NET platform, as

Windows Workflow Foundation [22] offers an attractive

scenario for developing highly configurable business process

modeling tools.

Fig. 19. BPLevel Modeler graphical user interface

-24-

The graphical user interface of BPLevel Modeler is shown

in Fig. 19. As it can be seen, BPLevel Modeler has been kept

as simple as possible in order to adapt to the computer skills

shown by non-technical business experts. This tool has only

one screen, which was divided into three different areas:

 The entity section, on the left of the screen, contains

the different entities that can be used during process

modeling. This section has been divided into five

different categories, which represent the five levels of

the methodology.

 The modeling section takes the center of the interface

and is intended for the definition of the business

process. It is closely related to the entity section, as

the components in it can be dragged into the

modeling section to define the desired business

process.

 The property section, situated at the right hand side of

the tool’s screen, contains the property view of the

BPLOM elements. The contents of this section

depend on the element selected in the modeling

section.

As BPLOM is designed as a skill level adaptive

methodology, BPLevel Modeler must also adapt to the skill

level presented by the user. In order to do so, when the tool is

executed it will ask the user his knowledge level and based on

the expert’s choice the entity section will be adapted to show

only the corresponding elements. Fig. 19 shows an entity

section corresponding to a Level 3 expert and the business

process model for the catalog application for that level.

Although BPLevel Modeler has been developed with

Windows Workflow Foundation, which is included inside the

.NET platform, the models it generates are considered

platform independent. Windows Workflow Foundation stores

models in a XML enriched format named XAML, a normal

XML file with additional information regarding the position of

the elements in the graphical representation of the process.

Thus, BPLevel Modeler archives could be transformed using

platform independent artifacts (like XSLT stylesheets, for

example) and therefore used to generate code for any desired

platform. As a matter of fact, in the use case described in this

paper BPLevel Modeler files will be transformed using

BPLevel Generator to generate mobile device applications for

the Android and iOS platforms.

B. BPLevel Generator: Creating custom apps for BPLOM

Models

BPLevel Generator is our code generation application. It

analyses business process files built with BPLevel Modeler

and generates multiplatform applications with specific

characteristics for the given BPLOM model. Despite the fact

that it is intended for computer experts this code generating

tool has also been kept as simple as possible.

Fig. 20. BPLevel Generator graphical user interface

Fig. 20 shows a screen capture of the BPLevel Generator

interface. As it can be seen, this tool requires the user to

introduce several pieces of information:

1. The BPLevel Modeler file that represents the

process that is going to be used as the basis for the

code generation.

2. The path where the application(s) resulting from the

generation process will be stored.

3. The path where the XML file with the graphical

information of the application and the media

resources are stored.

4. The platform(s) that the software is going to be

generated for.

It must be pointed out that at this moment not all the

generating features of BPLevel Generator are functional, but it

is prepared for the inclusion of this functionality as a result of

the planned future work.

Once the user introduces this data and starts the generation

process, BPLevel Generator begins the analysis of the business

model provided by the user and transforms this into the

application represented by the details provided by the user.

The generation process is divided into the following steps:

 Preparing the creation structure. Based on the path

provided by the user as destiny for the generation

process, BPLevel Modeler prepares the route for

receiving the generated app.

 Creating the custom app. Code templates of the

application(s) for the desired platform(s) are placed

inside the path provided as the destiny of the

generation process.

 Configuring the GUI of the application. BPLevel

Generator analyses the XML file containing the

graphical details of the application and substitutes the

values of these details in the corresponding code class

inside the application. BPLevel Generator also copies

all of the resources the application needs into the

appropriate folder inside the application.

 Configuring functionality of the application.

Through an analysis of the business process model

created with BPLevel Modeler our code generating

tool substitutes the needed lines of code inside the

application.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-25-

Fig. 21. Overview of the phases in the generating process and its result in the

application’s code for the background image of the main screen

Fig. 21 shows an example of how BPLevel Generator

manages to substitute the graphical configuration information

inside the application that is being generated. As it can be

seen, the XML file contains three types of details for each of

the controls or elements inside a given screen of the

application: position (x and y coordinates), size (width and

height values) and image. For each of the elements these

values are stored in a specific class inside the application and

then the instances of the elements in each screen are created

using these values. The figure shows as an example the

graphical configuration of the background image used in the

main screen of the iOS application, as the rest of the elements

are configured in a very similar way.

V. CONCLUSIONS

Requirements engineering is a critical task in the software

development process, as it is the first phase done during the

construction of any IT application and it establishes the needs

and characteristics of the software. Despite this importance,

requirements engineering has seen little changes in the last

years and difficulties stated by Sommerville and Kotonya in

their 1996 work [1] remain valid: the ambiguous character of

natural language, also stated by Laue and Gadatsch [11], and

the fact that the requirements engineer is not an expert of the

application’s domain. With these difficulties, another approach

for the requirements engineering process arose: business

process modeling. This discipline promotes the implication of

application domain experts through the use of notations half

way between computer knowledge and business domains.

Several business process modeling notations have appeared

since BPMN was defined, in some cases trying to reduce the

complexity level demonstrated by BPMN. This is the case of

SBPMN [6][20], a simple business process modeling notation

previously defined at the University of Oviedo. The mentioned

complexity rate makes some of the notations difficult to use

and understand by application domain experts with little or

none modeling and technical knowledge. In addition to the

complexity for modeling processes with these notations,

several studies on the usage rates of the symbols in BPMN

[3][7][19] have demonstrated the low use of some of the

symbols included in these notations.

Bearing in mind the figures of these symbol usage studies

and the difficulties found by business experts due to the

complexity of these notations, we have tried to define a

business process modeling methodology with two main goals:

adapt the notation’s complexity to the modeling and technical

knowledge of the business experts and reduce the symbol set

available in accordance with the mentioned usage rates. In

order to adapt the notation to the expert’s conditions, our

methodology promotes the definition of five incremental

levels, which add symbols to the notation gradually. When

using the last level in our methodology, the expert is capable

of using 20 symbols for modeling its processes; with this

number of symbols, we manage to minimize the loss in

expressiveness in comparison to BPMN and, at the same time,

make our methodology capable of modeling any type of

business process.

Once we defined this level oriented business process

methodology, we decided to create two tools to take advantage

of the methodology’s features: platform independency and

adaptive complexity. In first placed we built BPLevel

Modeler, our business process modeling tool with support for

our incremental level approach. Depending on the level

selected by the business expert at the startup of BPLevel

Modeler, the tool will automatically adapt its entity section to

hold only the symbols available in the selected level; for

example, if the user indicates its knowledge level is Level 2,

BPLevel Modeler will show in its entity section all the

symbols in levels 0, 1 and 2.

The other tool we have created is named BPLevel

Generator, a code generating tool intended for IT experts. As

business process models created with BPLevel Modeler are

stored in an extended XML format and our methodology is

platform independent, with BPLevel Generator we are capable

of generating custom applications for each business process

model constructed. For this generation to take place, BPLevel

Generator needs the following information: the business

process model file, the XML file with the graphical definition

of the user interfaces the application has and the resource files

used, the route for the code to be stored in and the deployment

platform (Android or iOS). With these pieces of information,

-26-

BPLevel Generator is capable of analyzing the business

process created with BPLevel Modeler in order to create a

custom application with support for that specific process

model in the desired platform, taking advantage of the

platform independency characteristic of our level oriented

methodology.

With this approach we manage to achieve the goals

presented at the beginning of this paper. The first objective

was to create a modeling notation capable of adapting its

complexity to the skill level shown by the user, goal achieved

through the definition of the level oriented methodology that

fosters the adaptation of the modeling notation to the skills and

knowledge the business expert has. We were also keen on

involving business experts in the requirements engineering

phase; this objective was accomplished with the creation of

BPLevel Modeler, a simple, graphical business process

modeling tool with support for the level oriented basis of our

methodology. Lastly, we intended to use the generated models

to generate the code of the custom applications that would give

support to this models; with BPLevel Generator we can

analyze the models created by the business experts and

generate the mobile applications that represent them.

VI. FUTURE WORK

This paper includes some usability results that were carried

out in order to establish the simplicity of BPLOM Level 0 and

the completeness of its symbol set. In order to test the entire

methodology we need to carry out some further testing with

the rest of the proposed levels, the first point in our future

work list. These usability tests will be focused in measuring

the following aspects: the entities’ graphical representation in

comparison with BPMN, as this methodology intends to

increase the experts’ usability and abstraction levels; and the

suitability of each of the levels regarding the entities they

include and the order they are presented in, intending to

minimize the time needed for the expert to advance through

the levels. In this extended testing procedure we will also be

able to determine the need to include more symbols present in

BPMN to our notation, as it was already said in part six of the

third section of this paper.

Another important point in our future work schedule is to

change the way in which the XML file with the app’s graphical

information is created. At this time, the IT expert needs to

manually introduce the details included in this document; these

details include image files for the backgrounds, positioning of

the elements inside the screen and size of these elements. Our

main goal is to design and program a graphical user interface

that enables the business expert to define the appearance of the

different screens that make up the app easily. We are

considering a drag and drop approach where the business

expert can include backgrounds, buttons and other controls

inside a canvas and adapt their look and feel to the style he

prefers.

As it could be seen in Fig. 1, the proposed business process

methodology is used to generate multiplatform mobile apps. In

the use case documented in this paper, the generated software

is a catalog app that allows users to scan through product

catalogs, add them to their basket and buy them. At this

moment the apps are generated for the most widely used

platforms for this type of devices: Android and iOS. Although

these platforms allow us to reach to the majority of mobile

device users, we are interested in offering support not only for

other mobile device platforms like Windows Phone but also

for desktop and web applications through other platforms like

Java and .NET. Moreover, we are also attracted by the

possibility of creating other types of applications for the

currently supported mobile platforms; for example, BPLOM

could be used to model the process behind multimedia mobile

apps like interactive books or even videogames, allowing the

corresponding business experts to design and generate their

own applications.

REFERENCES

[1] Kotonya, G. and Sommerville, I. “Requirements engineering with
viewpoints”. 1996. BCS/IEE. Software Eng. J. , 11(1): 5-18

[2] Stephen A. White, “Introduction to BPMN”. Business Process
Management Iniciative (year 2004).

[3] Michael zur Muehlen, Jan Recker. “How Much Language is Enough?
Theoretical and Practical Use of the Business Process Modeling
Notation”. 20th International Conference on Advanced Information
Systems Engineering (CAiSE 2008).

[4] Lauri Eloranta, Eero Kallio y Ilkka Terho. “A Notation Evaluation of
BPMN and UML Activity Diagrams" (year 2006).

[5] T.Wahl and G. Sindre. “An Analytical Evaluation of BPMN Using a
Semiotic Quality Framework”. CAiSE’05 Workshops. Volume 1, pages
533–544. FEUP, Porto, Portugal (year 2005).

[6] Fernández, H. F., et al. “SBPMN – An easier business process modeling
notation for business users”. Computer Standards & Interfaces 32 (1-
2):18–28.

[7] Jan C. Recker. “BPMN Modeling – Who, Where, How and Why”.
BPTrends (year 2008).

[8] Stephen A. White y Derek Miers. “BPMN Modeling and Reference
Guide: Understanding and Using BPMN”. Future Strategies Inc. (year
2008).

[9] Ryan K. L. Ko. “A computer scientist's introductory guide to business
process management (BPM)”. Crossroads v.15 n.4, p.11-18 (year 2009).

[10] R. Lu y S. Sadiq. “A Survey on Comparative Modelling Approaches”.
Proc. BIS'07 (year 2007).

[11] Ralf Laue y Andreas Gadatsch. “Measuring the Understandability of
Business Process Models - Are We Asking the Right Questions?”.
Business Process Management Workshops - BPM 2010 International
Workshops and Education Track (year 2010).

[12] Jan Recker, Niz Safrudin y Michael Rosemann. “How Novices Model
Business Processes”. Business Process Management – 8th International
Conference (year 2010).

[13] Zhiqiang Yan, Hajo A. Reijers y Remco M. Dijkman. “An evaluation of
BPMN Modeling Tools”. Business Process Modeling Notation - Second
International Workshop (year 2010).

[14] C.A. Petri. “Kommunikation mit Automaten”. PhD thesis, Institut fiir
instrumentelle Mathematik, Bonn. (year 1962).

[15] W.M.P van der Aalst et al. “The Application of Petri Nets to Workflow
Management”. The Journal of Circuits, Systems and Computers,
8(1):21–66. (year 1998).

[16] Jaime Solís Martínez, Vicente García Díaz, Begoña Cristina Pelayo
García-Bustelo y Juan Manuel Cueva Lovelle. “BPMN MUSIM:
Notación BPMN muy simplificada”. 6ª Conferencia Ibérica de Sistemas
y Tecnologías de Información (CISTI 2011).

[17] Jaime Solís Martínez, Vicente García Díaz, Begoña Cristina Pelayo
García-Bustelo y Juan Manuel Cueva Lovelle. “Isastur Modeler: A tool
for BPMN MUSIM”. 6ª Conferencia Ibérica de Sistemas y Tecnologías
de Información (CISTI 2011).

[18] Michele Chinosi and Alberto Trombetta. “A design methodology for
BPMN”. Chapter in the 2009 BPM and Workflow Handbook. (year
2009).

http://www.springerlink.com/content/?Author=Zhiqiang+Yan
http://www.springerlink.com/content/?Author=Hajo+A.+Reijers
http://www.springerlink.com/content/?Author=Remco+M.+Dijkman

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-27-

[19] Michele Chinosi, and Alberto Trombetta. "BPMN: An introduction to
the standard." Computer Standards & Interfaces 34.1 (year 2012).

[20] H. Fernandez-Fernandez, E. Palacios-González, V. García-Díaz, B.
Cristina Pelayo G-Bustelo, Oscar Sanjuán Martínez and Juan Manuel
Cueva Lovelle. “Developing a Business Application with BPM and
MDE”. International Journal of Artificial Intelligence and Interactive
Multimedia (IJIMAI). (year 2009).

[21] A.P. Castaño. “Prototype of assignment intelligent adaptive of service
providers inside of ESB with data mining”. International Journal of
Artificial Intelligence and Interactive Multimedia (IJIMAI). (year
2009).

[22] Windows Workflow Foundation. Last visit on May 5th 2013.
http://msdn.microsoft.com/es-es/netframework/aa663328

[23] OMG. Last visit on May 6th 2013. http://www.omg.org/

[24] BPMI. Last visit on May 7th 2013. http://www.omg.org/bpmi

[25] BPMN. Last visit on May 5th 2013. Last update on April 29th 2013.
http://www.omg.org/bpmn/

[26] UML. Last visit on May 4th 2013. Last update on April 15th 2013.
http://www.uml.org/

[27] jBoss jBPM. Last visit on May 4th 2013. http://www.jboss.org/jbpm

[28] MDE Research Group in the Department of Computer Science,
University of Oviedo. Last visit on May 7th 2013. Last update on
December 2012. https://sites.google.com/site/mdeootlab/Home

Jaime Solís-Martínez is a Ph.D student in the Computer
Science Department of the University of Oviedo. He has a B. Sc.
in Computer Science Engineering and a M. Sc. in Web
Engineering. His research interests include Model Driven
Engineering, Domain Specific Languages, Business Process
Modeling and the application of these technologies to web and

mobile device applications.

Natalia García-Menéndez has a B. Sc. in Computer Science
Engineering and a M. Sc. in Web Engineering, both at the
University of Oviedo. Currently serving as a multiplatform
mobile device programmer in the GADE4ALL project, her
research interests include DSL, MDA, programming of visual
editors for application design and using all these technologies

in mobile device apps.

B. Cristina Pelayo G-Bustelo is a Lecturer in the Computer
Science Department of the University of Oviedo. Ph.D. from
the University of Oviedo in Computer Engineering. Her
research interests include Object-Oriented technology,Web
Engineering, eGovernment, Modeling Software with BPM,
DSL and MDA.

Juan Manuel Cueva Lovelle is a Mining Engineer from
Oviedo Mining Engineers Technical School in 1983 (Oviedo
University, Spain). Ph. D. from Madrid Polytechnic University,
Spain (1990). From 1985 he is a Professor at the Languages
and Computers Systems Area in Oviedo University (Spain).
ACM and IEEE voting member. His research interests include

Object-Oriented technology, Language Processors, Human-Computer
Interface, Web Engineering, Modeling Software with BPM, DSL and MDA.

