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Abstract

This article evaluates the plausibility of synthesizing theory of knowledge

objectification (Radford, 2003) with equity research on mathematics education.

I suggest the cognitive phenomenon of mathematical inference as a promising

locus for investigating the types of agency that equity-driven scholars often

care for. In particular, I conceptualize students’ appropriation of semiotic-

cultural artifacts (e.g., algebraic symbols and forms) to objectify their pre-

symbolic inferences as conditional on their agency to carefully and

incrementally construct personal meaning for these artifacts. To empirically

ground this emerging approach, this study focuses on algebraic generalization

(as a type ofmathematical inference) and applies Radford’s framework to video

data of two iterations of an instructional intervention conducted in a high

school program for academically at-risk youth. I analyze and compare students’

acts of appropriation/objectification during whole-class conversations centered

on pattern-finding tasks, in relation to the instructional mode adopted for each

of the iterations—“direct instruction” vs. “inquiry-based.” The analysis shows

that the implementation involving inquiry-based instruction enabled more

equitable access to opportunities for agency-as-mathematical inference,

whereas the implementation involving direct-instruction was ostensibly more

productive. Implications for future equity research involving cognition-and-

instruction analyses are discussed.
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La Agencia como Inferencia:
Hacia una Teoría Crítica sobre
la Objetivización del
Conocimiento

Resumen

Este artículo evalúa la verosimilitud de sintetizar la teoría del conocimiento

objetivado (Radford, 2003) con investigación sobre equidad en didáctica de las

matemáticas. Propongo el fenómeno cognitivo de inferencia matemática como

un concepto prometedor para la investigación de los tipos de agencia de la

equidad impulsadas por los estudiantes. Conceptualizo la apropiación de los

estudiantes de los artefactos semióticos-culturales (p.e. símbolos y formas

algebraicas) como medios para objetivar sus inferencias pre-simbólicas como

condiciones de su agencia para construir cuidadosamente el significado de esos

artefactos. A fin de basar empíricamente este enfoque emergente, este estudio

se centra en la generalización algebraica (como un típo de inferencia

matemática) y aplica el marco desarrollado por Radford a los datos de vídeo de

dos iteraciones de una intervención educativa llevada a cabo en una escuela

secundaria con jóvenes en riesgo. Se analizan y comparan las conversaciones

de los estudiantes sobre la apropiación / obetivación, centradas en el patrón de

enseñanza adoptado por cada una de las iteraciones ("instrucción directa"

versus "basada en la investigación.") El análisis muestra que la ejecución que

implica instrucción basada en la investigación permitió un acceso más

equitativo a las oportunidades de inferencia agencia-como-matemática,

mientras que la aplicación directa de la participación de la instrucción era

aparentemente más productiva. Implicaciones para la investigación de acciones

futuras que incluyan análisis de la cognición y la instrucción se discuten.

Palabras Clave: razonamiento algebraico, agencia, generalización,

inferencia
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solving. Yet while these frameworks are being developed, the national

achievement gap persists, even amidcalls for equity in mathematics

education (DiME, 2007; R. Gutiérrez, 2002) and, in particular, to

improve the accessibility of algebra content for students from

underrepresented minority groups and economically disadvantaged

backgrounds (Moses & Cobb, 2001 ; Oakes, Joseph, & Muir, 2004).

Notwithstanding, I propose that recent theoretical work on algebraic

reasoning has the potential to illuminate new directions for broadening

diverse passage through this “gatekeeper” content. The objective of this

paper is to provide theoretical rationale and build upon some

preliminary empirical data so as to illustrate what we may need to attend

to as we pave these new directions.

Central to the theoretical argument of this article is Luis Radford’s

(2003, 2006, 2008) theory of knowledge objectification and, in

particular, his semiotic–cultural framework for the study of students’

algebraic reasoning. Taken together, this powerful approach views

learning as an evolving process co-constrained by both cognitive and

socio-cultural factors. Specifically, mathematics learning is

conceptualized as constructing personal meaning for semiotic-cultural

artifacts (e.g., algebraic symbols such as the variable x). In this article I

attempt to synthesize Radford’s approach with equity research on

mathematics education. To support this synthesis, I suggest the

phenomenon of mathematical inference, which is central to cognitivist

analyses of learning, as a promising locus for investigating the types of

agency that equity-driven scholars have deemed as vital for student

identity and, in turn, participation and learning (Boaler & Greeno, 2000;

Gresalfi, Martin, Hand, & Greeno, 2009; Wagner, 2004).

Equity studies on mathematics education are framed primarily in terms

of access to opportunities to learn (see DiME, 2007). At the classroom

or interactional level, for example, opportunities to learn are understood

and analyzed in terms of access to mathematics content and discourse

practices, as well as access to constructive mathematical identities that

are congruous with students’ sociocultural identities (Boaler, 2008;

thematic objective of mathematics education researchers

focusing on algebra content is to develop theoretical

frameworks that account for students’ difficulty with problemA
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Cobb & Hodge, 2002; Esmonde, 2009). Inherent to mathematical

content/discourse and identity is the notion of agency, that is, “who is

said to be making things happen” (Pickering, 1 995; Wagner, 2004). In

this article, I view the study ofmathematical inference as revealing both

of students’ reasoning processes and, simultaneously, of their agency. In

particular, I conceptualize students’ appropriation of canonical

mathematical artifacts as semiotic means of objectifying their budding

(pre-symbolic) inferences as conditional on their agency to carefully

and incrementally construct personal meaning for these cultural

artifacts.

To support this claim, I first propose a qualification to theory of

knowledge objectification that, in contrast to its extant formulation, does

not assume classroom homogeneity in opportunities to appropriate

mathematical semiotic artifacts. Next, to empirically ground this

emerging approach, this study focuses on algebraic generalization —as

a specific genre of mathematical inference— and applies Radford’s

framework to video data of a teacher’s classroom orchestration around

pattern-finding tasks.

The empirical context for this study is a participatory instructional

design intervention conducted in a high school mathematics program for

academically at-risk youth. The intervention was intended to implement

a classroom participation structure that would facilitate a particular

desirable interaction among students and ultimately give rise to

authentic engagement and deep learning. The intervention was also an

opportunity for the teacher to reflect critically on issues germane to

equitable mathematics education, such that he continue to engage with

these issues in his own practice. For this article I focus on two iterations

of a whole-class problem solving activity, Group A and Group B, and

conduct my data analysis through the semiotic-cultural perspective. The

main questions that guide my analysis are the following:

• Are whole-class conversations that are ostensibly

productive also necessarily equitable?

• How can we distinguish between “equity” and

“productivity” in classroom mathematical discourse?



To address these questions, I analyzed and compared students’ acts of

appropriation/objectification during whole-class conversations centered

on pattern-finding tasks, in relation to the instructional mode adopted

for each of the iterations. Group A used “inquiry-based” instructional

techniques, whereas Group B was implemented using mostly “direct

instruction.” Consequently, the analysis shows that Group A’s

implementation enabled more equitable access to opportunities for

agency-as-mathematical inference, whereas Group B’s implementation

was ostensibly more productive.
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Prior Research & Theoretical Background—Toward A Critical

Semiotic–Cultural Perspective

It has been well documented that historically marginalized groups, such

as African American, Latino/a, and economically disadvantaged

students, are under-represented in higher education and, in particular, in

the fields of science, technology, engineering, and mathematics (STEM)

(NSB, 2008). The research further implicates high-school mathematics

as the de facto “gatekeeper” into academic and technological

communities of practice (RAND, 2003; Ladson-Billings, 1 998).

Namely, access to and completion of rigorous high-school mathematics

courses has been shown to be among the strongest predictors of student

success in higher education (Oakes, et al. , 2004). Therefore, improving

access to high-school mathematics education is an important goal

toward bridging the academic achievement gap. A central focus of this

effort should be on algebra content, because high-stakes exams define

“success in school” directly in terms of success in algebra (Moses &

Cobb, 2001 ).

In this section I review the literature on student algebraic reasoning. So

doing, I introduce the cultural–semiotic perspective as a means of

illuminating affective and not just cognitive factors that are critical for

mathematics students from marginalized communities specifically.

Empirical Studies on Student Algebraic Reasoning

Modeling situations and manipulating symbols in Algebra

problem solving.

Algebra, viewed as a human practice, can be characterized broadly as

involving complex sense-making processes (Kaput, 2007; Schoenfeld,
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2007). These processes are often further described as demanding two

general capacities that both characterize algebraic problem-solving

activity and constitute common goals and objectives of curricular design

that inform classroom instruction:

1 . Modeling – actions for making initial sense of a given

problem situation, such as creating and expressing

generalizations to model the source situation using

increasingly formal representational forms (e.g.,

symbolic expressions, graphs, tables, verbal descriptions,

or some combinations thereof).

2. Solving – reflecting and operating on those mathematical

representations using conventional manipulation

procedures to support reasoning about the source

situation being modeled.

Distinguishing between these two core capacities has illuminated the

challenges faced by my target population. Specifically, my previous

studies suggest that discourse plays a more critical role in the

development of (1 ) than (2) for struggling students from historically

marginalized groups (Gutierrez, 2010). Before I unpack the details of

this assertion, first it is necessary to review the literature on algebra

learning challenges that are presumably faced by all learners. So doing

will enable me to later leverage a critique of and propose a qualification

to the predominant theoretical models pertaining to student algebraic

reasoning.

Algebra learning challenges: focus on the semiotic–cultural

perspective.

Learning algebra has historically been fraught with conceptual

challenges (for a recent review, see Kieran, 2007). In particular, the

literature has documented cognitive “gaps” that students must traverse

as they transition from arithmetic to algebraic forms of reasoning. For

example, Luis Radford (2003) applies semiotic analysis to implicate

discontinuation in students’ spatial–temporal embodied mathematical

experience, as they appropriate symbolic notation to express algebraic

generalization of non-symbolic situations. This “rupture” designates a

Gutiérrez - Agency as Inference



conceptually critical shift in the semiotic role of an inscription, such as

x, from indexing a specific actual aspect of the problem space, such as

the number of “toothpicks” in a geometric construction (see Figure 1 ,

below) to meaning any element within the plurality or even infinity of

imagined situated extensions of the problem. The x, in this case, has to

be liberated, so to speak, from the grounding situation from which it

emerged, so that the problem solver can manipulate the algebraic

expressions unconstrained by a constant need to evoke the situated

meaning of x. Consider the “toothpicks” problem (see Figure 1 , below),

a situation involving an initially unknown general principle governing

the relation between a numerical and a geometric sequence.

50REDIMAT- Journal ofResearch in Mathematics Education, 2 (1 )

Figure 1 . “Toothpicks”— a paradigmatic algebra generalization problem. The

task objective is to express Ux the total number of toothpicks in the xth figural

extension. For example, “Fig. 1 ” consists of three toothpicks, “Fig. 2” consists

of five, “Fig. 3” consists of seven, etc. , so that “Fig. x” consists of 2x+1

toothpicks.

Whereas Radford’s rupture lives in the realm of (1 ) Modeling,

researchers have also identified other gaps that live in the realm of (2)

Solving. For instance, Filloy and Rojano (1989) identify a stark

demarcation, which they call a didactic cut, between arithmetic and

algebraic forms of reasoning in the context of solving first-degree

equations with a single unknown. Equations such as Ax+B=C can be

solved using arithmetic means such as counting or inverse operations,

whereas equations with unknowns on both sides of the equal sign, such

as Ax+B=Cx+D, require “operations drawn from outside the domain of

arithmetic —that is, operations on the unknown” (Filloy and Rojano, p.

1 9). These scholars conclude that focused instructional intervention is

required at such didactic cut points. Note that whereas Filloy and

Rojano characterize the arithmetic–algebraic gap in terms of specific

mathematical forms (Ax+B=C vs Ax+B=Cx+D) and strategies to deal

appropriately with such forms, other researchers would characterize the



same gap in more fundamental terms. In particular, Herscovics and

Linchevski (1 994) maintain that students’ difficulty with equations

involving double occurrence (e.g., x+5=2x-1) is not so much a

didactical issue but rather suggests a deeper, underlying “cognitive gap”

that can be characterized as a fundamental inability to operate

spontaneously with or on unknown quantities.

Finally, research findings indicate that the capacities to model and

solve algebraic problems do not necessarily develop at the same rate,

and the research implicates traditional instruction as determining this

developmental differential. Namely, curricular material and teacher

practice tend to value symbol manipulation at the expense of creating

opportunities for students to practice initially generating these symbols

from problem situations (cf. Arcavi, 1 994; see also The Alegebra

Problem by Kaput, 2007). Thus the crux of algebra instruction is not

only to support the development of both types of capacity but also to

teach students to shift flexibly back and forth between them.

My earlier studies (Gutiérrez, 2010) support the implication of gaps

inherent to algebraic problem solving as foci for productive research. I

propose that discourse plays a greater role than has been theorized in

explicating these gaps and how they may be forded. In particular, I

submit, a critical examination of the role of discourse in algebraic

learning reveals that these gaps present affective and not just cognitive

challenges. Furthermore, for struggling students from historically

marginalized groups, issues of discourse and identity may play a more

critical and more nuanced role in the development of the core capacities

than has been previously surmised and particularly more so in (1 )

modeling as compared to (2) solving. I elaborate on this last point in the

next section, below.
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Building on Lev Vygotsky’s cultural-historical psychology and Edmund

Husserl’s phenomenological philosophy, Luis Radford’s (2003)

semiotic–cultural approach views learning as an evolving process

reflexively co-constrained by cognitive and socio-cultural factors.

Specifically, mathematics learning is conceptualized as constructing

personal meaning for canonical semiotic artifacts (e.g., algebraic

symbols such as the variable x). Through consolidation and iteration of
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these constructions, students appropriate the mathematical semiotic

artifacts and, reciprocally, build personal meaning for mathematical

content as well as fluency with the disciplinary procedures.

Radford’s approach takes into account a vast arsenal of personal and

interpersonal resources that students bring to bear in solving

mathematical situations, including linguistic devices and mathematical

tools. A key construct in Radford’s framework is knowledge

objectification, which is defined as the process of making the objects of

knowledge apparent (Radford, 2003). For example, a mathematics

learner, in an attempt to convey a certain aspect of a concrete object,

such as its shape or size, will make recourse to a variety of semiotic

artifacts such as mathematical symbols and inscriptions, words,

gestures, calculators, and so forth. In patterning activity, however, some

of the objects of knowledge are general and therefore “cannot be fully

exhibited in the concrete world” (Radford, 2008, p. 87). More broadly,

knowledge objects in mathematics are not too cognitively accessible,

because they do not exist in the world for empirical investigation

(Duval, 2006), that is, these objects are never apparent to perception.

Therefore, in order to instantiate (objectify) these ephemeral objects,

students must resort instead to personally and culturally available forms

such as linguistic, diagrammatic, symbolic, and substantive artifacts as

well as the body, which Radford (2003, 2008) collectively terms

semiotic means ofobjectification (see also Abrahamson, 2009).

The power of the semiotic–cultural approach is that critical steps

within individual learning trajectories can be explained by noting subtle

shifts in the subjective function and status of the semiotic artifacts

(Duval, 2006; Sfard, 2007). In particular, mathematics learning in the

context of algebraic generalizations can be monitored as subjective

transitions along a desired chain of signification, from factual, to

contextual, to symbolic modes of reasoning (Gutiérrez, 2010; Radford,

2010) (see Figure 2, below).

From this perspective, conceptual understanding is viewed as the

capacity to flexibly shift across the three semiotic modes, which

consequently requires that students assume agency in making these

shifts so as to carefully and incrementally construct personal meaning

for conventional semiotic artifacts (e.g., the variable x). Students’

personal acts of generalization —which are a specific type of
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Figure 2. “F-C-S” framework (applied to the “Toothpicks” problem; see Figure

1 , above): mathematics learning is conceptualized as shifts in semiotic modes.

mathematical inference— from one semiotic mode to the next mark

both their conceptual understanding and their mathematical agency.

That is, agency and conceptual understanding can be co-investigated by

interrogating the process and content of students’ mathematical

inferences (generalizations) within and across the three semiotic modes.

I conjecture that the development of agency-as-mathematical inference

bears implications for students’ nascent mathematical and social

identities.

To operate in the symbolic mode is predicated on a tacit (if not

explicit) alignment with the mainstream classroom discourse (Sfard,

2007). Many students may not experience tension due to shifts in

discursive alignment, perhaps because their social identities remain

intact and unthreatened by these public acts. However, for students

whose mathematical understandings are not couched in the mainstream

classroom discourse, these discursive shifts could threaten their social

identities and loyalty to their communities, because they perceive the

more “mathy” (symbolic) language as indexing the hegemonic cultural

values and ideologies1 .

Furthermore, returning to Radford’s construct of a rupture, note that he

describes it as largely a sensuous–cognitive phenomenon. What I

identify here is perhaps a different kind of rupture that is under-

researched, a rupture that is still sensuous yet affective in nature and,

through discourse, becomes imbricated with sociopolitical narratives of

power, individual agency, and identity.

The theoretical work detailed above has enabled me to articulate a

content-based definition of equity. Building on Esmonde’s (2009) notion

of “fair distribution of opportunities to learn,” I define equity as the fair

Gutiérrez - Agency as Inference
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distribution of opportunities for agency-as-mathematical inference. I

posit agency-as-mathematical inference is central in (1 ) developing both

conceptual understanding and the institutionally sanctioned mathema-

tical register, and (2) developing a constructive mathematical identity

(cf. "dominant" versus "critical" mathematics, Gutiérrez, 2002;

Veeragoudar-Harrell, 2009). This definition of equity implies that

algebraic generalization activity is not merely to create opportunities for

students to unreflectingly appropriate mathematical symbols and forms

—to operate merely in the symbolic mode without having generalized to

that mode (Gutiérrez, 2010) for the sake of classroom "productivity."

Rather, generalization activity is to enable student agency to produce

semiotically grounded inferences so as to progress along the desired

chain of signification from the factual through to the symbolic mode.

Having presented a critical semiotic–cultural framework and a content-

based definition of equity, I restate my research questions in light of

both of these. Namely,

• What are the conditions that support equitable access to

opportunities to produce semiotically grounded

generalizations and progress along the F-C-S trajectory?

• How do instructional modes affect these classroom

opportunities?

Next I describe the methods used to address these questions.

Methods

For this preliminary empirical study, I conducted a two-phase

collaboration with a high-school mathematics teacher from the San

Francisco Bay Area. In the first phase, I conducted an ethnography of

the teacher’s routine instruction, including videography, field-notes, and

interviews. Based on this ethnographic data and the teacher’s input, we

co-designed a non-routine instructional intervention focusing on

algebraic generalization; specifically, we implemented and

videographed two iterations (Group A & Group B) of an instructional

sequence using the “toothpicks” problem. The goals of this study were:

(1 ) to empirically examine the challenges and opportunities that

struggling students from diverse cultural and academic backgrounds,
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specifically, manifest with respect to reform and traditional algebra

curricula; and then (2) to articulate appropriate responses to these

challenges by identifying leverage points for effective pedagogy.

For this article I analyze and compare Group A with Group B, and

conduct my data analysis from a critical semiotic–cultural perspective.

To address my research questions, I examined students speech acts,

gestures, and artifact production during whole-class collaborative

engagement with algebraic generalization problems. I analyzed students’

collective reasoning processes during whole-class conversations, in

terms of whether and how their mathematical inferences were

semiotically grounded across the three modes. Furthermore, I also

analyzed students’ reasoning processes in relation to the specific

instructional mode adopted for each implementation. This cognition-

and-instruction analysis reveals that specific design decisions backing

the facilitation of each iteration resulted in differential access to

opportunities for student agency-cum-mathematical inference.

Data Sources

The entire data corpus includes students’ original work, a total of 10

hours of video footage, a total of two hours of audio recordings of

conversations between the researcher and teacher, and a project wiki

(online archive) that I used to store resources, document field-notes and

meeting minutes, and upload ongoing reflections. However, for this

article I focus on: a single 23-minute span of video footage from Group

A, in which the “toothpicks” problem was implemented; a total of 14.5

minutes of video footage from Group B, in which an x-y-table exercise

was implemented (Day 1 ), followed by the “toothpicks” problem (Day

2).

Analytic Techniques

Gutiérrez - Agency as Inference

I produced and analyzed transcriptions of Group A and Group B

teaching episodes, which capture all verbal, gestural, inscriptional, and

other semiotic actions that were clearly observable in the video.

Similarly, I also produced and analyzed transcriptions of the interviews

and design meetings conducted with the teacher, Amil (pseudonym). For

this study, I focus only on student utterances involving mathematical

propositions, for which two main analytic questions were asked
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pertaining to (1 ) its semiotic nature and (2) the instructional mode

surrounding its manifestation:

1 . Generalization Type (semiotically grounded versus

ungrounded):

1 a. Is the proposition a mathematical inference based

on a process of generalizing?

1b. [If so,] Is the proposition an arithmetic (recursive) or

algebraic (explicit) generalization?

1 c. [If so,] Is the proposition a factual, contextual, or

symbolic generalization?

2. Instructional Mode:

2a. Is the proposition —whether grounded or not— the

result of a discernable feature of the instructional mode

used to facilitate the activity?

Working with both the video/audio footage and the transcriptions, a

first pass of the data involving Group A and Group B’s implementations

was done using analytic questions 1a-1 c. I initially evaluated whether or

not each utterance reflected a semiotically grounded mathematical

generalization. This evaluation was based on a qualitative microgenetic

analysis (Schoenfeld, Smith, & Arcavi, 1 993) of students’ behaviors

during their whole-class discussions. I determined whether the students

engaged in authentic generalizing acts (i.e. , producing inferences based

on grasping and objectifying recurrent x-to-Ux relations and providing a

direct expression for any term along the sequence) or resorted instead to

other less-sophisticated strategies such as “guess and check” (see

“generalizing” versus “naïve induction,” Radford, 2008). Following this

in-depth qualitative analysis, a second pass through the data was done

using analytic question 2a, whereby students’ mathematical propositions

were analyzed vis-à-vis the active instructional mode. So doing, I traced

students (un)grounded generalization acts to specific design decisions

that were made prior to each implementation. Combined, questions 1 &

2 have enabled me to draw conclusions regarding the quality of learning

underlying students discursive productions, as well as the equitable

distribution of opportunities to learn in this local instructional context.
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Results and Discussion

The goal of this article is to examine and compare two iterations of an

instructional sequence involving the same algebraic generalization

problem to understand how variations in instructional mode could affect

equity in opportunities to gain deep conceptual understanding of

algebra. In this section, I first present a brief overview of both

implementations, including descriptions of the researcher and teacher’s

initial goals and objectives for instructional design, as well as

descriptions of the students’ behaviors during whole-class discussions.

With this overview, it is my intention to help prepare the reader for a

deeper analysis of the data that will be reported upon in the sections that

follow.

Overview of Participatory Design Project

Researcher and teacher’s initial goals and objectives for

instructional design.

The goals of the project wherein the data for this study were collected

were to occasionally observe Amil’s classroom practice and provide him

with ongoing feedback to foster critical reflection on learning issues that

struggling mathematics students from historically marginalized

communities face with respect to traditional and reform algebra

curricula. In particular, Amil’s routine teaching practice could be

characterized as “teacher-centered” and we discussed the possibility of

designing and implementing a student-centered instructional

intervention involving algebra content and concepts.

Amil acknowledged that his practice was routinely teacher-centered

and attributes the difficulty of implementing student-centered

instruction to lack of resources and support at his school for facilitating

such activities. Yet Amil recognized the benefits of student-centered

inquiry-based instruction and was open to co-designing and

implementing a non-routine mathematics activity.

We set out to design a student-centered inquiry-based activity for

algebra that would be implemented in his two math classes. We engaged

in a four-week long process of discussing and designing an activity

involving a family of algebraic pattern-finding tasks. We reviewed

relevant findings from recent mathematics educational research

Gutiérrez - Agency as Inference



58REDIMAT- Journal ofResearch in Mathematics Education, 2 (1 )

pertaining to algebraic generalization (e.g., Radford, 2003, 2008) and

designed an instructional sequence based on the semiotic–cultural

approach. We paid particular attention to scaffolding techniques; for

example, we planned and rehearsed scripts for scaffolding students from

the factual to the contextual mode, and from the contextual to the

symbolic mode, and back again.

The final lesson plan for Group A, which emphasized “Modeling” (see

section 2.1 .1 , above), involved three main components that would occur

over the course of two days. The first half of Day 1 involved an

introduction to patterning activity via a whole-class problem-solving

session centered on the “toothpicks” problem (see Figure 1 , above). The

second half of Day 1 involved small-group work on worksheets of a set

of similar pattern-finding tasks. Day 2 continued this small-group work

and wrapped up with a final whole-class debrief.

For this study, I have elected to focus only on the teacher’s classroom

facilitation of the “toothpicks” problem (i.e. , first half of Day 1 ). It’s

important to look at the very beginning of each of the implementations

because these activities frame this genre ofmathematical activity for the

students for the first time. The students’ encounter with the “toothpicks”

problems sets up their expectations and elicits their resources for

engaging with novel problem-situations, which offers a unique

empirical context for classroom research.

Overview of Group A.

The Group A teaching episode begins when Amil drew the first three

figural cues of the “toothpicks” sequence on the whiteboard. No specific

instructions were provided; Amil simply used an open-ended prompt

—“What comes next?”— to begin the problem-solving activity.

At the onset, some students immediately noticed that the figural

sequence could be construed as a succession of accruing triangles.

Whereas the students all agreed that the sequence could be extended by

“adding another triangle,” they disagreed, quite vehemently, over the

type of growth the sequence was exhibiting. For example, some students

argued that the sequence exhibits linear growth, whereby all figural cues

are unique (e.g., Fig. 3 and only Fig. 3 consists of three triangles),

extensions to the sequence are produced horizontally, and thus the

sequence grows indefinitely (see Figure 3a, below). On the contrary, a
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student argued that the initial figural cues exhibit the growth of a single

“hexagon” that terminates at Fig. 6 (see Figure 3b, below). Other

students proposed that the sequence could be a repeating “hexagon”

pattern, whereby Fig. 6 is a hexagon consisting of six triangles, Fig. 7

duplicates Fig. 1 , Fig. 8 duplicates Fig. 2, and so forth.

Figure 3.Student in the left image argues that the sequence of figural cues

constitutes a linear progression and thus articulates a recursive relationship,

whereas the student in the right image questions the apparent linearity of the

sequence and instead considers a cyclic or repeating “hexagon” pattern.

For the first several minutes of the problem-solving activity, Group A

students debated over the apparent linearity (or lack thereof) of the

sequence. Realizing that the class had reached an impasse, Amil settled

the argument by asserting that the sequence was linear; he then guided

further exploration of the source situation with a series of questions

(e.g., “How many toothpicks are in figure one? Figure two? Three?”).

The students noticed that the number of toothpicks required to construct

each consecutive figure always increases by a summand of two with

respect to the previous figure; the students co-constructed an arithmetic

generalization in the form of Ux+1=Ux+2. Furthermore, a key design

feature for implementing the “toothpicks” problem was to substitute

increasingly larger numbers (e.g., “Fig. 1 00”) as a way to impress upon

students that ultimately the arithmetic/recursive strategy is inefficient,

thus motivating the need for more powerful tools and strategies such as

algebraic generalizing and the use of explicit formulas.

For the remainder of the activity, most students were engaged in a

process of authentic generalizing. For example, some students

articulated an algebraic generalization in the form (x+x)+1 , which

Gutiérrez - Agency as Inference
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directly calculates the number of toothpicks for a given figure. The

students checked their formula with a few cases and, upon confirming

its accuracy, successfully applied it to Fig. 1 00, concluding that it would

consist of 201 toothpicks.

At the end of the activity, Amil reformulated the students’ explicit

formula, which was originally articulated in the contextual mode (i.e. ,

St. utterance: “you add the figure number to itself, plus one”), as the

symbolic expression 2x+1 . However, as my forthcoming analysis will

demonstrate, despite the teacher having provided the symbolic version

of the correct formula, by and large the instructional mode used during

Group A’s implementation enabled strong opportunities for student

agency-as-mathematical inference.

In sum, Amil and I co-designed a facilitation strategy for Group A’s

implementation of the “toothpicks” problem, which utilized a student-

centered inquiry-based instructional mode that, in turn, was generative

of students’ mathematical inference and spontaneous debate.

Throughout, Group A students articulated and vigorously defended

opposing arguments related to a complex mathematical topic (linear

progression) and the entire class engaged in highly charged debates

—mathematical discussions the likes of which I had not witnessed

before in this particular classroom setting. These behaviors —proposing,

questioning, and justifying mathematical inferences— are characteristic

of expert mathematicians (see e.g., Rivera, 2008); Group B’s

implementation of similar pattern-finding problems, which used teacher-

centered direct instruction, enabled much weaker opportunities for these

same “expert” behaviors.

Overview of Group B.

Based on Amil’s input after the first implementation, we modified the

instructional sequence for Group B. Primarily, Amil had a deep concern

for classroom efficiency and productivity, and he requested that Group

B’s implementation have greater continuity with mainstream curricular

topics. In particular, he viewed the overall project as an opportunity for

his students for review and enrichment of basic skills. As such, the

intervention should foster the development of these basic skills as much

as possible, which is something that Amil perceived was lacking in

Group A’s implementation. For example Amil expressly stated that he
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wanted students to develop fluency with basic procedural skills such as

“going from a table to an equation.” Moreover, he stated that he wanted

to teach specific strategies for dealing with pattern-finding tasks, to

instruct students directly on “how to recognize the equation in a

procedural way.” This “procedural way” was tantamount to drawing

students’ attention to possible relations between a figure’s ordinal

position (x) and a quantity related to its constituent elements (e.g., Ux)

via direct instruction (as opposed to letting them “discover” this strategy

on their own). The lesson plan for the second iteration thus resulted as

an attempt to strike a balance between a radical constructivist approach

and a more “traditional” approach that often relies too heavily on direct-

instruction.

We modified the lesson plan such that it emphasized “Solving” over

“Modeling” (see section 2.1 .1 , above). On Day 1 , the lesson would

begin with a short (5 min.) exercise involving a table of x and y values

(x = {0, 1 , 2, 3 , 4, … , 50} , and y = {3, 5, 7, 9, 11 , … , 103} ), which can

be modeled with the function y=2x+3. On Day 2, just before Amil

introduced the “toothpicks” problem, he started off with a refresher of

the table of values, its solution procedure and its symbolic

reformulation, 2x+3. The intent was for students to first familiarize

themselves with the numerical values inherent to the “toothpicks”

sequence and its algebraic solution, so that later they could retroactively

appropriate this solution as means of accomplishing contextual goals

(i.e. , calculating Ux). Furthermore, Amil wanted to present this

particular patterning task in a way that highlighted the y-intercept of an

algebraic equation. We modified the figures’ ordinal positions, so that

sequences began with “Fig. 0” instead of “Fig. 1 ,” thus explicitly

linking the sequence of figural cues and its graphical representation

(e.g., when x=0, y-intercept=3).

Next I briefly describe each of the two days of Group B’s

implementation.

Group B-day 1.

Gutiérrez - Agency as Inference

This first teaching episode begins when Amil presented an x-y table to

the class as a “warm-up” exercise. Amil instructed the class to fill in the

missing values by using the data provided in the table. Students noticed

that the x values were increasing by a summand of 1 and the y values
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were increasing by a summand of 2; thus they were able to produce

extensions to the table of values. Similar to Group A’s implementation, a

key design feature for presenting the table of values was to substitute

increasingly larger numbers (e.g., “when x equals fifty, what does y

equal?”) as a way to render students’ arithmetic strategies as insufficient

and thus motivate them to search for explicit formulas. However, during

this short exercise most students employed naïve induction and not

generalizing as a means of dealing with the two numerical sequences.

After about four minutes of whole-class exploration, and with no clear

solution procedure yet articulated, Amil verbally explained the

limitations of an arithmetic strategy, emphasizing the need to find an

explicit formula for calculating y’s from large x’s without having to

perform many iterations of repeated addition.

Amil also explained a strategy for “finding the rule” by drawing the

students’ attention away from the difference between consecutive y

values, and having them focus instead on finding a relationship structure

within x-y pairs. Upon this direct instruction, a student immediately

articulated an explicit rule for the problem at hand: “n times two plus

three.”

Group B-day 2.

This teaching episode begun with a review of the previous day’s table

exercise, which then led to the introduction of the “toothpicks” problem.

Responding to the same open-ended prompt —“What comes next?”—

the students immediately noticed that the figural sequence forms a

succession of accruing triangles. They co-constructed an arithmetic

generalization in the form of Ux+1=Ux+2. Using the same tactics as

before, Amil extended the conceptual problem-space to include figural

extensions that are further along the sequence, and wrote “Fig. 50” on

the board. As expected, students immediately calculated that Fig. 50

would have 103 toothpicks. However, the evidence suggests that

although students verbalized the correct solution for Fig. 50, their

behaviors did not indicate generalizing as their main strategy. It is

conceivable that students merely associated “Fig. 50” with “103” from

their experience with the x-y table exercise, and thus assumed that it was

the correct answer without actually verifying it.
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In-Depth Look at Students’ Mathematical Inferences Bearing

Generalization

I here present qualitative data analysis of a series of selected transcript

segments from both implementations. By conducting detailed and

sequential analyses of students’ contributions during both of the

implementations, I aim to show that: (1 ) the instructional mode adopted

for Sequence A enabled stronger opportunities for student agency-as-

mathematical inference; whereas (2) the instructional mode adopted for

Sequence B enabled greater classroom productivity from the perspective

of “traditional” assessment. Specifically, I diagnose Group A’s “F-C-S”

trajectory as partially grounded and Group B’s as ungrounded; yet I also

determine that Group A was less productive than Group B, in terms of

time spent on task and the amount ofmaterial covered.

Opprotunities to Learn Classes

Agency-as-Mathematical Inference Group A

(SCIB)

Group A

(SCIB)

Group B

(TCDI)

Group B

(TCDI)

Productivity

Table 1

Contrasting profiles of two instructional sequences of the same

“toothpicks” problem: “student-centered inquiry-based” (SCIB) versus

“teacher-centered direct instruction” (TCDI).

Gutiérrez - Agency as Inference

Group A – Creating Opportunities for Students’ Spontaneous

Appropriation of Cultural Artifacts.

The transcript below begins just after Group A students articulate a

recursive strategy, that “it goes up by two.” Amil instructed them

explicitly not to manually produce all the intermediate figural

extensions between the initial set of cues (Fig.’s 1 -6) and those that are

further along the sequence (Fig. 1 00).

>

<
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Amil: You know it's going up by two each time. Ok. What

would—let's say—let's skip a little bit [writes "Figure

100" on the far right side of the board] .

Sts. : One hundred! Figure one hundred! Oh my god! Why

you skip so far?

Ami: Who thinks they can figure how many toothpicks go

in figure one hundred?

St-T: Me! [jumps from his seat toward Amil, grabbing the

marker from his hand]

Amil: How?

St-R: Don’t draw it!

St-T: I’m gonna draw it!

Amil: The rule is, you can’t drawit. Youcan’t—you

can’t—you don’t want to draw ninety-six figures!

Amil’s edict of “you can’t draw it” implicitly suggests to students that

their recursive strategy is insufficient, and the instructional mode

enabled them to explore other strategies for dealing with Fig.1 00. The

students first express a solution procedure that relates the number of

toothpicks to it’s ordinal position, in the form Ux=x+2, but they soon

realize that this strategy does not obtain for known cases. St-M then

proposes a recursive strategy whereby two toothpicks are added to the

last figural extension in order to produce the next one, that is,

Ux+1=Ux+2. Although useful for producing extensions to the sequence,

St-M articulates exactly why this strategy is insufficient as a closed-

explicit formula and thus cannot be used to calculate the number of

toothpicks in Fig. 1 00, stating: “No, because you don’t know the figure

before.” (During the class discussions, St-M referred to Ux as “the

figure,” which Amil later rectifies, see below.)

Realizing the limitations of their recursive/additive strategies, St-M

then spontaneously proposes the use of the variable x as a placeholder

for the figure number.

St-M: You have to do x instead of a number

Amil: Ok, so you have to do x instead of a number. What do

you mean?

St-M: Because if you use x then it could be any number.
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Amil: Ok so you have to use x—we gotta use x. So what is x

gonna be?

St-M: x is the amount of triangles.

Implicit in St-M’s proposition is the understanding that x could serve

as an indeterminate quantity, thus enabling operation on the figure

numbers (ordinal positions) independent of the previous figures in the

sequence. St-M guides her peers to look for patterned relations within

and not just across the figures. So doing, St-M leads the class to a

closed-explicit solution procedure in the form Ux=2x+1 , as a contextual

generalization (Radford, 2003, 2008):

St-M: I found something. Ok so if you add the figure

number to itself plus one, it will equal the amount of

toothpicks.

Amil then prompts St-M to verify the accuracy of her procedure by

checking it on known cases; once they verify that it is correct, St-M then

successfully applies her procedure to Fig. 1 00.

Amil: Ok figure number to itself. So [indicates Fig. 1 ] one

plus one.. .plus one more? Equals three. So [indicates

Fig. 2] two plus two—

St-M: Four, plus one is five.

Amil: Plus one equals five. [Indicates Fig. 3] .

St-M: And then three plus three is six plus one, seven. Four

plus four, eight, plus one, nine. Five plus five, ten,

plus one, eleven.

Amil: Ok how about figure onehundred?Howmany

[toothpicks] would it have?

St-M: A hundred plus a hundred, two hundred, two hundred

minus—I mean two hundred plus one, two-o-one.

St-K: [inaudible] Two-o-one.

It is important to note that Amil did not explicitly instruct Group A to

look for these within relationship structures. St-M, having realized the

limitations of their previous recursive strategies, spontaneously searched

Gutiérrez - Agency as Inference
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for x-to-Ux relations. It appears that the instructional mode for Group A

enabled an opportunity for St-M to spontaneously operate with

unknown quantities, which in turn, constituted an opportunity for the

teacher to assess this particular student as having mediated the

“cognitive gap” (Herscovics & Linchevski, 1 994).

St-M further elaborates on her (generalizing) search process:

St-M: [addressing the class] The thing—see the thing that I

did though, I was just looking for things that they all

had in common. And they had the figure number plus

another one.

Such a contextual generalization was missing from Group B’s

implementation of the same “toothpicks” problem (see below).

Contextual generalization is vital for grounded appropriation of

mathematical semiotic artifacts such as the variable x (Gutiérrez, 2010;

Radford, 2003). However, accomplishing this necessary cognitive

milestone enroute to a canonical symbolic reformulation does not

guarantee one will actually arrive there. That is, contextual

generalization is necessary but not sufficient for semiotically grounded

F-C-S trajectories. Ultimately, based on my analysis of Group A’s

implementation, I diagnose student utterances as having generalized to

the symbolic mode yet partially grounded, because it is Amil and not a

student who verbalizes the final contextual generalization in symbolic

form.

Amil: Ok so you said the figure number. . .one.. .plus the

figure number again, right? What's another way of

saying that? Instead of saying the figure number plus

the figure number again.. .

St-M: I don’t know.

Amil: Ok Uhh let’s see. [referring to Figure 2] Two plus two

plus one. What’s another way of saying two plus two?

Or [indicating Fig. 3] three plus three? [No response

from class] How about two times the figure number,

plus one? Right?

St-M: Yeah umm oh yeah.
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Amil: Ok so that is. . . [writes “2n+1” on the board] so that's

our—

St-M: So it could still be—it could still be x! So it'll be two

x plus one.

Amil: Or two x plus one. You can put any letter there.

St-M: Ok.

Although St-M did not objectify the symbolic version herself, I

maintain there was enough conceptual substrate —at the cognitive-

semiotic level— for St-M to appropriate Amil’s reformulation in a way

that bore personal meaning. Taken together, these excerpts above

suggest that St-M’s articulation of the solution was partially grounded

across the F-C-S trajectory.

Group B – Classroom Productivity at the Expense of Students’

Grounded Appropriation of Cultural Artifacts.

Gutiérrez - Agency as Inference

On Day 1 , Group B was also instructed explicitly not to draw or count

between the initial set of figural cues and those that are further along the

sequence. However, unlike Group A, Group B gave no indication that

they recognized the limitations of their arithmetic strategies and/or fully

appreciated the power of algebraic formulas. Instead, Amil flatly stated

that their emerging strategies were insufficient.

For instance, during the table exercise, the students articulated a

recursive functional relationship between the x and y table values, in the

form f(x+1)=f(x)+2. The students employed naïve induction to guess y-

values when x=50; Amil responds to their propositions with a mini

lecture wherein he gives the strategy to look within x-y pair values and

not just across the y-values.

Amil: Here’s the deal, alright. So in order to figure out—it

seems to me when you guys were figuring out what

[figure] five and [figure] six were, you just were

adding two to these [gestures across entries from the

y-row], right? But it gets more tricky when you go

further down the line [makes a sweeping gesture

across the intermediate space where Fig.’s 6-49 would

be] and say you want—when x equals fifty what does
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y equal? You can’t just add two that many times,

right? The thing is, the way to figure this out, there’s a

rule. Ok there’s a relationship between this number

[indicates x=0] and that number [indicates y=3] . Ok

so you guys were just looking at these numbers

[gestures across the y-row] just the bottom numbers.

But there’s a relationship between this number [x=0]

and that number [y=0] and you have to figure that out.

Recall that Group A generated their own strategies and explored their

utility in the context of a student-centered, inquiry-based whole-class

discussion. In contrast, Group B was explicitly told what to do and what

to look for, instead of providing an opportunity for them to discover

strategies and the limitations and affordances of these strategies for

themselves.

On Day 2, Group B articulates a recursive strategy for the “toothpicks”

problem, Ux+1=Ux+2, and use it to produce extensions to the sequence.

Fig. 50 is introduced into the problem space and the students

immediately calculate its number of toothpicks.

Amil: Five right? This one’s got how many [indicates Fig.

2]?

St-L: Seven.

St-P: Nine [referring to Fig. 3] .

St-L: It goes up by two! It goes up by two.

St-P: The other one is eleven [referring to Fig. 4] .

St-B: Twelve. I mean eleven [referring to Fig. 4] !

Amil: [Writes “11 ” under Fig. 4] Ok so then [writes “Fig.

50” on the board] .

St-N: It’s going to be one hundred and two!

Amil: Figure fifty, how many toothpicks is it gonna be?

St-L: A hundred and three!

Amil: A hundred and three? Why a hundred and three? What

rule are you using?

St-B: It's the same thing! The same one as the other one

[referring to the solution to the table exercise] .
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Although the students immediately and correctly calculated the number

of toothpicks in Fig. 50, the evidence suggests that their mathematically

correct propositions nevertheless constitute a conditional appropriation

(of a previous solution procedure) and thus remained semiotically

ungrounded. Right after St-B proclaims that it’s the “same one as the

other one,” Amil asks for the specific rule governing the number of

toothpicks for any figure, to which the St-B reproduces the symbolic

formula as before, but was left confused as to its relevance to the actual

figural cues.

Amil: What rule was that?

St-B: x times two plus three. But I didn't know you added

three! I thought you only added two!

Amil: Huh?

Sts. : [Inaudible classroom chatter]

Amil: Yes, that right. It's going to be one hundred and three.

Remember, the key is figuring out the rule. The rule is

going to tell you how to figure out how many

toothpicks are in any number, in any number figure,

right? [Erases all the work from the board, thus

ending the problem-solving session for Day 2] .

Based on St-B’s behaviors —first correctly stating the number of

toothpicks for Fig. 50, then articulating the symbolic version of the

solution procedure, but then ultimately questioning the operations in

that solution procedure and their relation to the growth of the actual

figural sequence— I argue that the solution procedure was merely

transferred from a previous context (the x-y table) to a new situation that

involved similar quantities. That is, Group B objectified the symbolic

formula during the table-of-values exercise on Day 1 , and later

appropriated this formula as the solution procedure to the toothpicks

problem without grounding it in the actual problem space. Therefore, I

diagnose Group B’s symbolic formula as the final product of an

ungrounded F-C-S trajectory. The formula they verbalized and

successfully applied to the toothpicks was arguably semiotically

grounded to the numerical quantities inherent to the toothpicks sequence

but was derived and appropriated in isolation of the figural cues. That is,

Gutiérrez - Agency as Inference
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their solution procedure was semiotically grounded back in the x-y

values of the table, not in actual constituent elements of the source

situation.
Implications and Future Directions

The goals of this article were to consider two iterations of an

instructional sequence involving patterning activity to explore how

variations in instructional mode impact student learning. I proposed the

cognitive phenomenon of mathematical inference as an analytic focus

for synthesizing equity-driven and more “classical” research on

mathematics education. Critical qualitative analysis of a teacher’s

classroom orchestration around a particular pattern-finding problem

revealed differential —and therefore inequitable— opportunities for

agency-as-mathematical inference across two instructional modes

—“teacher-centered inquiry-based” versus “teacher-centered direct

instruction.” The iteration involving student-centered inquiry-based

instruction provided stronger opportunities for students to assume

agency during the patterning activity; thus, students were able to

produce semiotically grounded mathematical inferences. In contrast, the

iteration involving teacher-centered direct instruction created a

participation structure that sanctioned mere participation in the symbolic

mode at the cost of student agency, thus disenfranchising students from

opportunities to build deep personal meaning for the content

(generalizing). At the same time, however, the patterning activity

facilitated using direct instruction was ostensibly more productive in

terms of time spent on task and the amount ofmaterial covered.

Lastly, the emerging approach presented in this article relaxes tension

in the “where’s the math?” debate (Heid, 2010; Martin, Gholson, &

Leonard, 2010). I maintain that by looking at agency-as-mathematical

inference, researchers can contribute to both “classical” mathematics

education research, which is typically framed and analyzed in terms of

cognitive or conceptual challenges, and equity-driven research that

attempts to theorize teaching and learning as socio-political acts and

accounts for issues related to power, access, and identity (Ball, Battista,

Harel, Thompson, & Confrey, 2010; Confrey, 2010). The study

presented here represents first-steps in a longer research agenda that

seeks to understand how organizational–hierarchical power structures
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shape local instructional contexts that, in turn, enable or constrain

opportunities to learn.

Gutiérrez - Agency as Inference

Notes
1 Broadly, from a sociological perspective, there are mainly two competing
interpretations of students’ apparent “oppositional” behavior in schools serving
historically under-served communities. One perspective is that students are
unequivocally rejecting schooling practices because these practices represent dominant,
hegemonic cultural norms and values (e.g., Willis, 1 977). Contrary to this perspective,
Sánchez-Jankowski (2008) concludes that students’ actions primarily affirm their own
local culture, values, and knowledge and are not their effort to resist the conventional
cultural norms of broader society. In this way, students’ could experience tension in
adopting a formal mathematical register not because they seek to flatly reject all things
representing broader society, but because it is not immediately clear whether and how
the new register is relevant to or affirms their local culture and norms (see also Cultural
Modeling Framework, Lee, 2006).
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