
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 2.

- 87 -

Abstract – Model Driven Engineering (MDE) is gaining ever

more strength due to the fact that with MDE the software

development can be much more productive and this is the way to

go closer to real software industrialization. With MDA

TALISMAN, we have succeeded in creating complex software

solutions for food traceability adapted to different customers,

ready to be deployed. We rely on the approach to MDE most

extended at present, MDA (Model-Driven Development) but as

we shall see, we also use the main pillars that support the

Software Factories, The proposal from Microsoft to MDE.

Besides, in this paper we present five cases of success with MDA

TALISMAN.

Keywords: Intelligent, Automatic, MDA, MDD, MDE, Software

Factory, Traceability.

I. INTRODUCTION

T is well known that Model-Driven Engineering (MDE) is

an approach of the Software Engineering that is gaining

more strength each day and that tries to achieve the generation

of the code of applications either automatically or semi-

automatically. MDE is a generic term that refers to paradigms

like Software Factories [1], the proposal of Microsoft based

on MDE or the Model-Driven Architecture (MDA) [2], the

proposal of the Object Management Group (OMG), that is

who is giving further impetus to MDE, at least in terms of the

number of publications. There are some others approaches

and some others architectures [3], but currently they do not

have great relevance. We will explain briefly these two

concepts now.

The remaining paper is structured as follows: In the

following lines we will talk about the principles of MDA and

Software Factories. In Section 2 we explain what the food

traceability and what the origin of our work are. In section 3

we will explain the architecture of our system, the MDA

TALISMAN. Section 4 is related to cases of study in which

MDA TALISMAN can generate others systems for food

traceability depending on the type of cheese. In section 5 we

comment the conclusions and future work, and finally we

show the references to other papers.

This work was supported in part by the Oviedo University under Grant

IOVD-01. A.

A. MDA Principles

The proposal is based mainly on reducing the weight of the

implementation and increase the weight that has the modeling

of the system, this follows a similar approach to other

engineering that are not equal to the computer science. For

example the entire world agrees that to building a bridge

requires a detailed plane of the bridge, that is, its model.

The use of models has several advantages, increases

portability, interoperability and reusability of systems. The

idea, is to start with some models of a high level of

abstraction (CIM, Computational Independent Model) that

pick up the requirements of the system without using a

computer language. Later, becomes a transformation lowering

the level of abstraction to a computer model but independent

of the computer platform used (PIM, Platform Independent

Model) which represent solutions at design level for the

requirements of the CIM. The PIM can be transformed into

one or more models dependent on the computing platform

used (PSM, Platform Specific Model) that provides specific

models of one or more desired technological solutions. The

last transformation is to convert the various PSM to source

code, ready to be used or refined before being used.

Finally, we want to comment that the OMG has more

defined standards that serve as basis for the definition of

MDA. MOF [4], UML [5], XMI [6], OCL [7], and QVT [8].

To know about real application of Model-Driven Architecture,

we recommend [9].

In [1] after comparing software engineering with others,

such as civil engineering, its authors have identified the

following reasons why the traditional software development

has problems:

• One-off development.

• Monolithic systems and increasing system complexity.

• Process immaturity.

• Growing demand for software systems.

In order to try to solve these problems Microsoft has

created the concept of Software Factory. To explain this

concept we have to talk about the four pillars of Software

Factories [10] showed in Fig. 1

Automated code generation support for BI with

MDA TALISMAN

Vicente García-Díaz, Héctor Fernández-Fernández, Elías Palacios-González,

B. Cristina Pelayo G-Bustelo, Óscar Sanjuan-Martínez, Juan Manuel Cueva Lovelle

I

Special Issue on Business Intelligence and Semantic Web. ISSN - 1989-1660

- 88 -

Figure 1. The four pillars of the Software Factories

• Architecture Frameworks. It refers to that we should

implement the common features of a system on a basic

Framework, which has to provide extension points

where components can be integrated and extended.

• Product line Development. It refers to that a product

line should only attempt to cover a specific domain or

market segment without attempt to cover all the

possible domains.

• Model-Driven Development. It is the closest point

regarding MDA, Also it is closely related to domain-

specific languages (DSL) [11].

• Guidance in Context. It refers to that we should

include facilities such as code samples, how-to help

pages, articles, and so on.

It should be keep in mind that there are always two

perspectives from which we can see the Software Factories,

on the one hand is the viewpoint of the developer of the

Software Factory (author's view), and on the other hand is the

viewpoint of the developer who uses the Software Factory to

create software (consumer's view).

The idea is not to create a system whereby we can create all

kinds of applications automatically as aspires MDA. The

Software Factories are more realistic and although they raise a

lot the level of abstraction respect of traditional software, they

do not do it like MDA. Authors such as [12] or [13] say that

MDA is too pretentious and compare it with the ideas offered

by CASE tools that failed in their attempt.

II. FOOD TRACEABILITY

The food traceability is becoming more important in our

days and that is the reason why we consider important

introduce that term and by the way, what the origin of our

work is. To explain what food traceability is we will give a

simple example. If you have ever been wondering yourself

what was the origin of any food, for instance, the cow that

gave the milk that is in your cheese, then you have been

wondering about the traceability of this cheese. To tell the

truth, on January 1, 2005 (in accordance with article 18 of the

European regulation 1782002) [14] all food businesses should

have a traceability system but, unfortunately, today the reality

is quite different. It can be concluded that food traceability is

a need with which to tackle the problems that can give

products for the food consumption. It consists of collecting

data during all phases of the production process of an article

and whether health authorities require it, to have such

information. Information is beginning to store with the raw

materials used in manufacturing (origin, quantity, supplier,

and any other information that may be of interest). Later will

be stored intermediate processes that occur in the

manufacturing of articles (e.g. dates or temperatures) and

finally, who sold the article before arriving at the hands of the

end-user (such as an intermediary or a supermarket). The idea

is to have fully determined the history of an article. The goal

is to have stored information and that can be used by health

authorities, but it may also be of interest to the producer to

store statistics, ensure product quality or determine

responsibilities, and of course the ultimate consumer may be

interested in know the origin of what they eat. For that reason

might be a good choice to provide consumers with

mechanisms to be able to get some kind of information on the

articles they consume, as this will increase confidence through

transparency. One of the main causes of the introduction of

food traceability is that when there is an alert food we must

locate and withdraw from the chain supply any product that

might be affected in some way, from effectively and

efficiently, because so far no one can say that things are not

well without food traceability systems but neither anyone can

prove that the companies are doing well and of course a

failure in a food business for a particular item (e.g. chicken

meat) can affect the image and thus in the economic aspect of

all other companies who market the same or similar articles.

III. MDA TALISMAN

The MDA TALISMAN [15], our proposal based on MDE,

use the approach promoted by the OMG, doing separations at

different levels of abstraction. The highest level of

abstraction, CIM, is transformed to a PIM manually, and since

then the process is automatic, the PIM is refined and becomes

another PIM, the PIM becomes a PSM, the PSM is refined

and becomes another PSM, and finally the PSM is

transformed directly into source code. Although we have

adapted it to the real case presented in this paper, its basic

architecture is shown in the following figure.

Figure 2. Basic architecture of the MDA TALISMAN

 There are three distinct layers, Content, Web Application

(we are orientated towards Web applications), and

Functionality. Each one of the three layers can be divided into

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 2.

- 89 -

the three views promoted by MDA (CIM, PIM, and PSM):

 Content. This layer defines the data to create the

business layer and the main structure of the database.

 Web Application. This layer is responsible for creating

the structure of the pages viewed by the end-user and

the relationships between them. It is also responsible

for user profiles, and users who can access the cited

pages or portions thereof.

 Functionality. Thanks to this layer it is able to offer

Web Services to the outside or may use other Web

Services supplied from other URLs.

A. Architectural features

Initially, MDA TALISMAN was conceived as an

architecture for Web applications. After that, it was found its

flexibility to adapt to complex software solutions involving

Web applications, Windows services and hardware of various

kinds, generating software solutions ready to be deployed

(Fig. 5). UML, by itself, does not have the power required to

generate solutions so sophisticated. There are UML profiles,

which can be adapted to the needs of those who used them

and continue to rely on MOF as well as UML but the

complexity of development increases too much to achieve the

level of detail needed to make food traceability software, and

that is our goal with MDA TALISMAN. So the solution was

to create a basic framework. MDA Talisman focuses on the

family of applications for food traceability and the basic

framework will have generated all the common features to all

applications for food traceability. Then what will be done, is

to inject the parties variables code in the basic framework.

Our idea, perfectly house with three of the basic pillars of

Software Factories that we commented at the beginning of

this work:

 Product line Development. MDA TALISMAN focuses

on the family for food traceability applications.

 Architecture Frameworks. MDA TALISMAN uses a

framework to provide all the common functionality

that not vary across products of the production line

(across each cheese factory).

 Model-driven development. MDA TALISMAN uses a

model for generating all the functionality that changes

from one product to another of the production line.

B. Inputs

 To do their tasks MDA TALISMAN needs a series of

artifacts that will discuss below:

1) eXtensible Process Definition Markup Language (XPDML)

 To achieve our goals we have set up a DSL called

XPDML (eXtensible Process Definition Markup Language)

which is a subset of XML (eXtensible Markup Language) and

that is the heart of our system. The reason for creating a new

language is to have a language with the concepts of the

domain in order to facilitate ways in which producers adapt

the application to their needs. This language has evolved

constantly since the beginning of MDA TALISMAN adapting

to new needs required by customers (owners of the dairies)

that have been added and adjusted progressively over the past

year. Currently, to define the variable aspects of a dairy we

use a document with eight sections. XPDML (displayed in

Figure 3) is in its version 1.0 and has the following:

Figure 3. XPDML example as XML document

Figure 4. Action specification in XPDML

 Actions. This section describes in unambiguous

manner all actions that will be on development process.

One action, as well as its attributes, has to indicate

what products will receive as input and what products

will appear in the output after running the action. It

should be seen as a graph in which a node has

entrances and has exits (e.g. milk mixture consists of

mixing milk, rennet and salt and as a result we get

curd). In addition, to control the various operations

(e.g. the range of temperature of the milk that is

received at the factory) restrictions can be defined for

each. Another interesting thing is the list of hardware

devices to intervene in an action (for example when a

cheese is packed, it will generate a label with a

labeler). In Figure 4 can be seen a snippet of code

which defines an action. Other sections are defined

using snippets similar to this section

 Items. As important as the actions are the articles,

because the actions (nodes) will have articles at the

entrance, and articles at the exit (arcs). For instance we

will talk about the cheese commercialized. The

products have other sub-definable features such as

properties (for example, who customer has bought the

cheese or on what date), definition of forecasts for

production calculating (e.g. how many kilos of cheese

will be produced with x litres of milk), definition of

locations (e.g. different drying caves where cheeses

Special Issue on Business Intelligence and Semantic Web. ISSN - 1989-1660

- 90 -

can lead), and lastly the hardware devices associated

with that article (a scale weighing would be an

example). For the above example, it has not been

necessary to define forecasts, locations or hardware

devices, but it will be necessary for other articles.

 Devices. For the system to work properly it is

necessary that the server and other hardware interact. A

device could be defined through an Ethernet

connection to an IP address and a determined port. In

one case the hardware is a terminal (could be another,

such as a labeler).

 Lists. We used different lists of items to give

functionality to the system. For instance the list of

possible designs for a label to be printed, initially, there

will be two possible designs, design one and design

two, respectively stored in two diffent files. In addition

to this list, there will be very different lists with other

information such as customers, suppliers, business

data, types of milk, and so on.

 Reports. The reports are very important, because

collect and display necessary information about the

system. There are several types of reports, check list of

the status of facilities, cleaning, product description,

temperature control, etc.

 Labels. It is necessary that all factories have a labeling

system to label their products before selling them to an

intermediary or a final customer. To define a label for a

client and a for a definite article, we should indicate

diverse information, such as label design, the style of

the label, the type of bar code, the initial digits of the

bar code, or a series of fields which give descriptions.

 TraceabilityPoints. Traceability is essential in the

implementation generated by the MDA TALISMAN.

In this section we indicate interesting point that we

want to register. We will indicate the product for which

we want to record information and the property that we

want to save (for example, we might want to save the

date and time when creating a new batch of cheese).

 Tags. Here are listed all possible TAGs strings of 16

digits that have the chips that are used for

identification) associated with an identification number

in the database. It will achieve two things, on the one

hand be able to work from identifiers, which are much

shorter than the TAGs, and on the other hand if it

breaks down a chip during a process, may be

substituted by another with its identifier.

It is important to realize that the information contained in

Figure 3 is the same information that is contained in the

graphic representation of the model (an example of graphical

representation of the model is shown in Figure 6). Indeed, in

addition to the graphic representation of information that can

be seen in the figure, there are other important information to

be added to the XPDML document that enrich the definition

of a particular dairy.

2) Language files

The system that generates MDA TALISMAN is a

multilanguage system. For that reason, we need to provide

files with the translation into the language or languages

desired. Basically there will be a file called Basic.XML

containing translations valid for the entire production line, and

another called Language.XML that will be specific to the

variable part and therefore it will change from one system to

another. In addition to the two files described there will be

others who depend on the architecture, for instance ASP.NET

has files associated with each of their pages in order to change

the culture of a system without too much difficulty.

3) Labels

During product development, there will be several points

on which may require the printing of a label. Obviously, these

labels will be configured with preferences or requirements of

each producer and therefore they will be used with the MDA

TALISMAN to generate the system for a specific customer.

4) Style Sheet

You can also use a stylesheet line with the preferences of

the client to generate Web pages to your liking and not having

to make changes afterwards. Its use provides a fast and

flexible way to change the whole aspect.

5) Images

 There will be pictures such as the logo which will also be

used with MDA TALISMAN, returning well, to avoid having

to make any changes afterwards. We use around ten images

for each client.

C. Outputs

 MDA TALISMAN produces a series of artefacts which

are listed below:

1) Complete Solution

As a result of the MDA TALISMAN process you will

obtain a software solution consisting of seven projects ready

to be compiled and deployed (In Figure 5 can be seen the

aspect of the solution created automatically by MDA

TALISMAN working with Visual Studio).

2) Data Base Script

The output will also contain a file called DataBase.sql,

which is a file used to create all the static and dynamic

information from the database, that is, both tables and the

information necessary to operate the system.

3) Log Files

 MDA TALISMAN uses Log4net to create log files that

contains information from all processes it has accomplished

during his transformations. In addition to MDA TALISMAN,

log4net is also used for systems generated with MDA

TALISMAN.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 2.

- 91 -

Figure 5. Visual Studio Solution generated by MDA TALISMAN

4) Transformations

The heart of MDA TALISMAN is the XPDML language.

With it, there are a number of transformations that lead to the

solution previously commented. At this point we try to discuss

these changes so that, to make it clear. First of all it should be

noted that the XPDML file corresponds to the PIM stage of

the MDA philosophy, and that is why the document XPDML

is called PIM.XML. The idea is to introduce in this file all the

platform independent information and therefore begin the

process of transformation. The second step will be to convert

the PIM.XML file into PIMtoPIM.XML file since the new

model created from the previous is also platform-independent

but now the information it contains is no longer XPDML, it is

a document in XML format in which UML and UML profiles

information are serialized, and thus a part of the system is

already under the umbrella of the MDA guidelines. It should

be noted that the reason for using XML standard instead of

XMI as proposed by the OMG group is none other than the

fact that there are several XMI formats, mutually

incompatible, and that the tools with which UML diagrams

can be created also tend to use their own XMI format

incompatible with the other existing tools on the market. In

the PIMtoPIM.XML file we can find the following:

 Conceptual data model. It is part of the Content layer

and with it are specified aspects needed to achieve the

persistence of data.

 Users model. It is part of the Web Application layer

and specifies the users and the profiles of the system.

 Fragments model. It is part of the Web Application

layer and indicates the different web pages.

 Navigation model. It is part of the Web Application

layer and specifies the navigation possibilities on the

site.

 Services model. It is part of the Business layer and

specifies the Web services offered to other sites.

 Client services model. It is part of the Business layer

and specifies Web services for which the system is a

customer.

Then, the PIMtoPIM.XML file is transformed into the

PSM.XML file that already is a platform dependent model.

An example of transformation that can be given in this step is

to convert a platform independent data type in a platform

specific data type. In our case, .NET would be the target

platform and CSharp would be the used language. Thus, for

example in PIMtoPIM.XML we have a TEXT data type and

in PSM.XML that data type becomes a String. The major

transformations taking place in this step are:

 The Conceptual data model becomes the Entity-

relationship model.

 The Fragments model becomes XMLSchemas

documents, which contain the information to be

displayed on Web pages.

 The Navigation model becomes XLink document,

which contain information of links between elements.

MDA TALISMAN also takes into account a transformation

from PSM.XML to PSMtoPSM.XML, however for the time

being done without any processing. It is taken into account

because it is one of the MDA steps and we may give it some

kind of use in the future. Finally, we need to generate code

from the PSM.XML file and put it together with the code

already generated with the basic framework. The new code is

generated with text templates that has the ExpertCoder library

[16] that give a lot of flexibility and avoid having to generate

code by hand. For example, the Users model contains

information of different users and user profiles that can use

the web Application and for this reason generate code is

necessary to this model fulfill its purpose. Thus, part of the

code will be placed in the Web.config file that is the file

where it was introduced security policies for each of the

different web pages but it will also be necessary, for example,

take into account the different profiles and users to create a

script that initializes the database to be used. To appoint

another of the transformations taking place we will discuss the

Entity-relationship model. From that model, MDA

TALISMAN generates the tables in the database that match

the model, but also it generates the Business and Business

Facade projects with all the necessary files to work with them,

using NHibernate for independent access to data.

4 Five cases of real usage

 When we gave this work the first thing we did was a

survey of dairies that there are different in Asturias (Spain),

their common points (from which we get our basic

Framework) and points where they differ (from which we get

our XPDML).

After the analysis we have done, we realized that despite

the relatively small size of factories, how to make cheese is

quite different from one company to another. Even companies

that manufacture the same type of cheese have many points of

disagreement in the manufacture. In addition, MDA

Special Issue on Business Intelligence and Semantic Web. ISSN - 1989-1660

- 92 -

TALISMAN could generate, with no problem, traceability

systems for other food industries different from those dairies,

since all follow the same basic principles. We want to briefly

explain some of the differences between the different cheeses

for better understanding the needs of adaptation of software,

and so far, the five types of cheese for which we have

developed their system are as follows:

 Cabrales. It is the cheese for which we made the first

prototype of all. It is a cheese made from milk of

sheep, goat or cow (also can be any of the three

combinations) that after a maturation period of

approximately 60 days in the caves of the Picos de

Europe is sold at a price that depends on its size. The

treatment is done by units of cheese, so a cheese from

the same batch may for instance be inserted on the site

where they are going to dry before another. That is

why chips are used (they have the size of a currency

euro) which identifies each cheese and that are read by

RFID reader devices. There are 21 different possible

subtypes of cheese.

 Casín. It is a cheese that is produced quite faster than

Cabrales cheese. For its production, some different raw

material is used to those of Cabrales cheese such as

calcium and ferments. It comprises three different

types of kneading of products that are getting

increasingly close to the cheese. The treatment is done

by groups of cheese and to achieve it, an RFID label is

printed with a label printer and then placed on different

shelves for each batch. All cheeses are sold at the same

price and have the same size.

 Afuega'l pitu. It is similar to Casín cheese but have

differences such as that in addition to cheese, also is

prepared cottage cheese, and that there are several

different types of cheese depending on the type of

paprika being used. In addition there are boxes (to

which we add RFID labels) that are marked in order to

move the cheese and not mixing batches.

 Gamoneu. The main difference between this cheese

and Cabrales cheese is that the production of the

dairies of Gamoneu is much greater in number than

those of Cabrales, hence, it will be necessary to bring

an organization using batch of cheeses instead of

individual cheeses but at the time of packaging is

necessary weight each of the cheeses. There are 6

possible subtypes of different cheeses. The type of

chips is similar to Cabrales.

 Beyos. The Beyos cheese can be seen as a mixture of

Afuega'l pitu cheese and Casín cheese with some

changes in the various processes. Some RFID tags are

printed in one of the steps that are placed on shelves

where the cheese is placed during different stages of

their manufacture.

Basically all of them need specific software generated by

MDA TALISMAN, SQL server data base, a computer, a

scale, a printer, a label printer, RFID readers, industrial

terminals, and lots of chips. But depending on the mode of

manufacturing the number of items may change, or for

example the client could require various other devices such as

RFID printers or RFID labels. What never changes is that our

software is the one who controls and manages all mentioned

hardware.

To better understand the process, Figure 6 shows the graph

that we created after some visits to a dairy of Afuega'l pitu.

This graph shows the most important aspects (in the absence

of many details) of the process of development and is taken as

the main base for the generation of XPDML file which in turn

serves for the generation of the specific traceability system.

Then, one of the things that MDA TALISMAN automatically

generated from the entry into XPDML format, is a graph with

all the different actions (processes) and items (elements) that

there is throughout the whole process of preparing the cheese.

That is a SVG format file that contains the graph generated

from the input of Afuega'l pitu.

Figure 6. Graphic representation of the model of Afuega‘l pitu cheese

This graph is very useful because people can quickly

understand all the steps that have the manufacturing process

and most importantly of all is that any changes made in the

XPDML file is reflected in the graph, changing automatically

the parts of the graph as may be necessary. In addition, the

image is modified at runtime so that depending on the user

profile that is being used in the application at any given time,

will activate links to undertake some or other actions (to be

able to carry out the action straight from the graph).

IV. CONCLUSIONS AND FUTURE WORK

 Our MDA TALISMAN serves to generate applications

automatically following the steps of the MDA specification.

What happens is that to generate complete software solutions

such complex and heterogeneous, ready to deploy in an

environment, is today impossible, then we used a framework

to inject the code generated through MDA transformations.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 2.

- 93 -

This injection of code in a framework leads our MDA

TALISMAN towards the ideas promulgated by defenders of

the Software Factories. This fact makes that the target of our

next job is being to analyze the pros and cons of MDA and the

Software Factories to see how we can improve MDA

TALISMAN to be capable of generating all kinds of software

solutions using the best MDE practices. Also, it is clear that

our MDA TALISMAN begins its process with a PIM (A

representation of the manufacturing process of each individual

case). For this reason we are developing a method thanks to

which we will automatically go from CIM to PIM and this

would greatly facilitate the task, because people outside the

world of computers could generate their own applications for

food traceability from their specific requirements independent

of computing (CIM) easily. More at [17]

 Finally, this work has been done with the contract FUO-

EM-120-07 "Software Development for the realization of

traceability", working together the University of Oviedo and

the company LINK

REFERENCES

[1] J. Greenfield., K. Short, S. Cook, S. Kent, J. Crupi ―Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and

Tools‖. Wiley Computer Publishing, Sep 2004

[15] Object Management Group (OMG). ―MDA Guide. V1.0.1‖;
http://www.omg.org/docs/omg/03-06-01.pdf, Jun 2003

[16] Leist. S, Zellner. G ―Evaluation of current architecture framework‖.

Proceeding of the 2006 ACM symposium on Applied computing, 2006.
[17] Object Management Group (OMG). ―Meta Object Facility (MOF) Core

Specification. v2.0‖; http://www.omg.org/docs/formal/06-01-01.pdf,

Jan 2006
[18] Object Management Group (OMG). ―OMG Unified Modelling

Language Infrastructure. v2.1.1‖; http://www.omg.org/docs/formal/07-

11-04.pdf, Nov 2007
[19] Object Management Group (OMG). ―MOF 2.0 XMI Mapping.

v2.1.1.pdf‖; http://www.omg.org/docs/formal/07-12-01.pdf, Dec 2007

[20] Object Management Group (OMG). ―Object Constraint Language.
v2.0‖; http://www.omg.org/docs/formal/06-05-01.pdf, May 2006

[21] Object Management Group (OMG). ―Meta Object Facility (MOF) 2.0

Query View Transformation Specification‖;
http://www.omg.org/docs/ptc/07-07-07.pdf, Jul 2007

[22] M. Guttman, J. Parodi ―Real-Life MDA: Solving Business Problems

with Model Driven Architecture‖. Morgan Kaufmann, 2007.
[23] G. Lenz, R. Wienands ―Practical Software Factories in .NET‖. Apress,

2006

[24] S. Cook, G. Jones, S. Kent, A. Wills ―Domain-Specific Development
with Visual Studio DSL Tools‖. Addison-Wesley, 2007

[25] D. Thomas ―MDA: Revenge of the modelers or UML utopia?‖. IEEE

Software, 21, 2004
[26] S. Cook ―Domain-specific modelling and model driven architecture‖.

MDA Journal, 2004

[27] The European Parliament and the Council of the European Union.
―REGULATION (EC) No 178/2002 OF THE EUROPEAN

PARLAMENT AND OF THE COUNCIL‖;

[28] http://eurlex.europa.eu/pri/en/oj/dat/2002/l_031/l_03120020201e
n00010024.pdf

[29] C. G-Bustelo. ―TALISMAN: Desarrollo Ágil de Software con

Arquitctura Dirigida por modelos‖. PhdTesis, University of Oviedo,
2007

[30] Expertcoder. http://expertcoder.sourceforge.net

[31] H. Hernández-Fernández, V. García-Díaz, E. Palacios-González, C. G-
Bustelo, J. Cueva Lovelle ―Design of intelligent business applications

based on BPM and MDE‖. The 2008 World Congress in Computer

Science, 2008

Vicente García Díaz is a Computer Engineer, Ph.D student in the

Department of Computer Science at the University of Oviedo, Asturias
(Spain). He has a Project Management Cerfication by Project Management

Institute. He is Superior Technician in Occupational Hazard Prevention. His

research interests include model-driven engineering, domain-specific
languages, project risk management, software development processes and

practices. He can be reached at garciavicente@uniovi.es

Dr. B. Cristina Pelayo García-Bustelo: She is Computer Engineer and Ph.

D. by University of Oviedo, Lecturer in the Computer Science Department of

the University of Oviedo. She has developed her doctoral thesis in model

driven development (MDD), with various publications and business projects

based on this thesis. Her research interest include Modeling Software with

MDA, BPM, DSL, Object-Oriented technology, Web Engineering, e-

Government, Design Patterns, Semantic Web and Web 2.0. She's author of

books, articles and conference papers.

Dr. Oscar San Juan Martinez: He is Ph.D. from the Pontifical University of

Salamanca in Computer Engineering. His research interest includes Object-

Oriented technology, Web Engineering, Software Agents, Modeling Software

with BPM, DSL and MDA. Electronics HNC from the University of Wales,

graduate in International Studies from the SEI. He has translated and

contributed to the review of multiple reference books in the field of Software

Engineering. He has published over 80 articles in journals and national

conferences and international prestige. In his teaching, he has taught over 30

seminars and conferences in Europe and Latin America on Intelligent Agents,

Evolutionary systems, Biologically-inspired computing, Interactive Software,

Multimedia, Games and Virtual Reality. In his business, he was Director of

the Office of R & D of the Pontifical University of Salamanca, Coordinator of

the Master in developing video game and entertainment software and

technology consultant for "Vector Information Technologies" Spanish

company dedicated to developing highly skilled computer projects in the area

of Internet and Mobile Systems, Ubiquity and GIS. Currently works at the

University of Oviedo where he developed his research in the field of Model

Driven Development, intelligent systems, bio-inspired and interactive,

accessibility, emerging systems and the future of the Internet (Smart-Objects

and Objects-Net).

Professor Juan Manuel Cueva Lovelle: He is Ph.D. from the Polytechnic

University of Madrid in Mining Engineering, Professor in the Computer

Science Department of the University of Oviedo (Spain). Has knowledge of

metallurgical processes. He is voting member of ACM and IEEE. His

research areas include Model Driven Development, Object-Oriented

Technology, Language Processors, Human-Computer Interaction and Web

Engineering. He conducted several research projects and PhD in Computer

Engineering. He is author of books, articles and conference papers,

coordinates the research laboratory of Technologies of Object-Oriented

Computing department at the University of Oviedo (OOTLab).

mailto:garciavicente@uniovi.es

