
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-23-

Abstract — As technology advances more and more "things"

began to appear in digital format, such as: tickets, agendas,

books, electronic purses, etc. Internet of things encourages

communication and integration of physical objects with each

other and people to automate tasks and improve efficiency.

Digital objects like physicists should be part of Internet of Things

but the different structures of these digital objects causes in most

cases these digital objects can interact only with specific

applications that know the specific format. Based on the problems

in this paper proposes a structure that supports the generic

construction of virtual objects irrespective of their business logic

and their integration with other applications and "things".

Keywords — Virtual Object, Internet of Things, DDTS, Web

Services, Smart Phone.

I. INTRODUCTION

HE main idea in the Internet of Things is that any ―thing‖

or object, conveniently tagged, may be able to

communicate with other objects equally tagged through

internet or any other protocols. These objects which are part of

the net may contain small chips or embedded systems,

depending on their purpose [1]. They may range from home

equipment to industrial items or even electrodomestic, cars or

even supermarket food. Anything can be tagged to be part of

the Internet of things [2, 3].

Possibilities of the Internet of things to make people‘s life

easier and to automatize many of our current tasks are huge,

for instance, it is possible that the fridge may send an email to

our mobile phone if it runs out of milk, we can monitor

hospitalized patients by internet... there are lots of practical

applications and all of them are seen with a common basis:

―things‖ are communicating with ―things‖ or persons. [4]

Parallel to the development of technology, more and more

objects called ―things‖ which are merely physical start to be

seen also in digital format. Examples of them can be seen in:

books, maps, e-tickets for gigs, plane tickets, agendas, contact

cards, agendas, electronic purses etc.

Not all "virtual objects" that are used today are digital

models of physical objects, sometimes these objects are new

concepts designed for any type of task or information

encapsulation. We have defined the term ―virtual object‖ as a

digital element has a specific purpose, comprised a series of

data and can perform actions.

This work was supported in part by the Oviedo University under Grant

IOVD-01. A.

When we observe the behavior of these virtual objects we

see there is no standard format or any recommendation to

normalize their usage. There is no mechanism by which we

can treat them in a general way, store them, share them or

process them with other applications which may not know

their format.

Problems coming out of this lack of standard format are the

following:

 Difficulties for decode: devices with no specific

applications to decode the virtual object will not be able

to process it. Let‘s take as an example my Mobile

phone; if I transfer a contact card to another user, the

Mobile intended to receive it won‘t be able to decode

the incoming information. This handicap leads to the

need of installing many applications in case we want to

operate with different virtual objects. It makes it harder

for a company or developer to place in the market their

own virtual object, since nobody would be able to

decode it without the suitable software.

 Lack of Communications: Ideally, the objects linked to

the Internet of things to interact among themselves and

with other applications to automate tasks and increase

efficiency [5]. Since there is no standard format way to

get actions or services from a giving virtual object, it is

very difficult to interact with another application. Let`s

illustrate it with a cinema ticket which is basically

related to being a mere number code with stored

information in a company database. The ticket is

decoded by a web application and a specific machine.

By focusing on this, it is very complicated for a virtual

object to directly communicate with other applications

or to transfer the ticket to other user.

Internet of things follows the aim of making the

Communication between things possible, so things can

communicate by themselves with other things and users. A

physical thing may have a catalog of actions which is used to

communicate, for instance a sensor connected to the net

offering service to get position and temperature. The focus of

something connected to a web which has a catalog of actions

and is able to communicate by itself with other users is

crashing frontally against the focusing of virtual objects, which

do not exist themselves, independently, as entities, but only to

form part of an application which interprets them.

This work has been divided into the following sections: In

the second section provides an analysis of current trends in

Virtual Objects on the Internet of Things

Jordán Pascual Espada, Oscar Sanjuán Martínez, B. Cristina Pelayo García-Bustelo,

Juan Manuel Cueva Lovelle.

Computer Science Department, Oviedo University, Oviedo, Spain

T

Special Issue on Computer Science and Software Engineering

-24-

systems based on virtual objects. In the third section we define

the objectives to be met by the proposed model. In the next

section we examine virtual objects in order to define their

features and get their points in common. In the fifth section

presents a proposal for a common structure to support the

construction of virtual objects. In the following two sections

we construct a prototype virtual object with the proposed

structure and show the operation of the prototype. At the end

of the document refers to: potential uses of virtual objects and

standardized research findings.

II. CURRENT MODELS OF VIRTUAL OBJECTS

At present there are few systems that deal elements that

could be considered as virtual objects, mainly there are two

different approaches to model them.

A. Resources managed by device applications.

In this type of system virtual objects are composed of a

number of records stored in a database. The records are

dependent on an application that manages the application

contains the business logic that is run against the records in the

data store. The information associated with every record that

represents a virtual object varies according to each system and

business logic (Figure 1). Sometimes there may be rules or

conventions to model virtual objects belonging to specific

business logic, but there is no general model.

Figure 1. Structure of a management application contact cards.

Localized deficiencies in these systems are:

 One of the objectives is that virtual objects run in a

variety of devices. Devices that want to play a virtual

object need to have installed a specific application that

recognizes the particular format of the object.

 Derived from the first problem devices requires a large

number of installed applications, if each application is

only able to interpret a particular type of object. In

addition to the complication posed by developing an

application for each type of virtual object, device and

operating system. It would be impractical for every

website need a specific browser to be interpreted.

Following the approach of internet of things, the virtual

objects should also be able to integrate with other applications,

devices and users. When a virtual object is designed as a

resource which is treated by a specific application difficulties

arise that can be accessed or discovered in a generic way by

another application or device. Depending on whether the

application managing the virtual object mechanisms offers

some kind of integration or other applications may access the

object. In an ideal situation a specific virtual object should be

able to be accessed by other objects or applications, and

should be able to do the same. Communication with the virtual

objects should be conducted in a standardized way, although

obviously each object will not make the same actions but how

to display and access to those shares if it should be common to

them all.

B. Resources managed by Web applications.

In such systems, virtual objects are records in a data

warehouse and managed by a web application. Users interact

with virtual objects using web browser, in some systems also

use specific devices such as ATMs (Automated Teller

Machine, cash machine) that are connected directly to the

management application (Figure 2). This approach gets to the

interpretation and management of the object is not conditioned

by the applications installed on the client, as it is done through

a web browser.

Figure 2. Structure of an application for the sale of cinema tickets.

This type of system continues to make difficult the

possibility that virtual objects can communicate with other

applications or users outside the application where they are

running. Currently there are several web applications which

provide APIs as web services for data that are stored in the

web application (that model an object) can be integrated

applications. Although this alternative may be sufficient in

some cases, this solution is far from ideal. There are still

difficulties for the virtual object could communicate with a

physical object nearby, who holds the location-dependent

services [6] (supermarket, parking, etc.). Although the Web

application has access APIs, is difficult for a virtual object

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-25-

hosted in a web application takes the initiative in interacting

with other Things or application.

III. OBJECTIVES

In this document we will give shape to a possible format

recommended for the construction of virtual objects. Main

objectives are as follows:

 The proposition of a common structure for the

construction of virtual object, in which all of them,

regardless complexity or business logic, can be:

interpreted equally by any electronic device which is

provided with the computational capacity needed

(enclosed systems, computers PDAs, mobile phones

etc) without the need of any previous configuration or

specific software.

 To favour the integration and communications of any

virtual object with applications and users. It will be

similar to the process followed to integrate physical

elements to the internet of things since virtual objects

should offer the choice of discovering them to other

users or applications, as well as getting their action and

service‘s catalogs or even interacting with them.

Another objective is that the designed solution is a

technologically possible with the systems and devices that

exist today and that also is consistent with the trends and

evolution that follows Internet of things.

IV. FEATURES OF VIRTUAL OBJECTS

A. Interaction levels

The level of integration that can have a virtual object on the

internet of things is difficult to determine because it can cover

a lot of cases. Physical objects have different levels of

integration, for example, a yogurt has an RFID tag [7] that is

read by other things such as a smart refrigerator. The

intelligent fridge is an object much more ―complex‖ than the

yogurt, this object has a catalog of actions that enables it to

interact with people or other things such as RFID tagged food.

As physical objects, virtual objects can have different

degrees of integration depending on its purpose. For virtual

objects could have a similar integration of a complex physical

object connected to the Internet of things, the structure of

virtual objects should provide the opportunity to discover

objects and their associated actions.

The structure of virtual objects should include several levels

of interaction, and also be able to model virtual objects with a

lower degree of interaction, for example, virtual objects that

only have to be read or processed by other applications or

devices (similar to happened with the yogurt).

In conclusion, although a specific virtual object may not

require all types of interaction, the model should support the

following types of interaction:

 Interaction with people. A person must be able to

interact with the virtual object and control it through an

electronic device. Depending on the purpose of the

virtual object could be users with different privileges to

control some actions in the object (Figure 3). In the

same way that a physical object, a virtual object should

be able to change owner, this property could involve a

device migration.

Figure 3. Structure of an application for the sale of cinema tickets.

 Interaction with applications / things. This type of

interaction can be divided into two parts (Figure 4):

1. Interaction as a transmitter: the virtual object has to

be able to initiate interaction with another thing or

application.

2. Interaction as a receiver. The virtual object must be

able to be discovered by other "things" or

applications. Once discovered the virtual object, things

can interact with the object invoking actions that have

been in their catalog.

Figure 4. Structure of an application for the sale of cinema tickets.

B. Structure and properties

It deals with the searching of a unique structure which may

lead to the rebuilding, in the same way, very different objects:

plane tickets, intelligent publicity, contact cards etc.

In a similar way of a conventional application, parts of a

given virtual object could be divided in three layers:

 Application layer, in which we include the needed

mechanisms so the virtual object can interact with users

and applications. The classic form of interactions with

Special Issue on Computer Science and Software Engineering

-26-

users is by means of a rich graphic interface. The

interaction with other applications is normally made

through a service catalog.

 Business logic, in which we found all the Business

logic, executable coded or services the object can carry

out.

 Data access layer, in which necessary data are stored in

order to operate with the virtual object.

The design of the structure could be similar to that of a

conventional application, but still underlies a great difference

in their natures. Frequently, virtual objects are downloaded

through internet or are transferred from computers and this is

the reason why they should offer a structure very capable of

migrating between devices in a very dynamic way, very lightly,

and with no installation required. Instead of settling should be

run in a ―sandbox‖ with limited permissions [8].

Generally, all objects should have a series of common

properties which may allow identification: name, type and

identification.

At the time of dealing with an object, there are common

actions which are similar to those of a file. Can they be

copied? Can they be modified? Can they change owner, or be

transferred?

All needs and observations commented, have been taking

into count when it comes to elaborate a common structure for

virtual objects.

V. PROPOSAL: STRUCTURE OF VIRTUAL OBJECTS

Being based upon detected needs, this proposal defines that

the structure of a virtual object is formed by a group of files of

different nature. The precise model proposed in this document

has been called Virtual Objects DDTS (Device Dependent

Temporary Services). The choice of this name is based on the

following arguments:

 Services. The virtual object will communicate with

other devices or applications sharing the actions it

associates for this purpose use a catalog of services.

 Temporary. Most of the virtual objects are not designed

to have a persistent character as an ordinary

application. The proposed structure attempts to model

objects "supplies" which are used in a limited period,

until a certain date or activity.

 Device Dependent. The virtual object needs to be

placed in an electronic device, which acts as a container

of objects. One of the properties of these objects is to

be able to change host device to maintain its status and

function. Sometimes the objects will be downloaded

from the internet; others migrate between devices, etc.

The elements that form the structure virtual object DDST

are:

 Descriptor: XML file, which contains information

about identity, configuration, general behaviours,

arrangement and execution of the virtual object.

 Graphical interfaces: XML files, each one represents a

screen, which is the means by which the user can

communicate with the logic of a virtual object.

 Service catalogs: there are resources which have the

function of showing the applications or programmes,

the actions an object may carry out. This interaction is

achieved by means of service catalogs, which execute

actions in the business logic of the object.

 Executable code: a file which contains the needed code

to execute the virtual object logic. The code can be

obtained in different formats or languages of

programming in order to be executed in devices of

different characteristics.

 Data storage: if the logic regarding Business services

may require persistence, this must be provided with a

file responsible for the arrangement of that information.

Virtual objects are relatively simple models when

compared to that of a conventional application. They

are not thought to store a great deal of registers but only

a few values.

 Additional resources: Could be included a Lumber of

extra resources, in a non-limited way. Generally, this

will be multimedia resources: images, icons and videos,

which will be used to complete the graphical parcel

regarding virtual object.

VI. DEVELOPMENT OF VIRTUAL OBJECTS DDTS

To illustrate the use of virtual objects DDTS has

implemented a movie ticket, following the proposed

specification; this prototype will be used to illustrate the

structure and operation of virtual objects.

Complementing the virtual object input has developed an

application "manager of virtual objects," which runs on the

Android mobile operating system [9]. The ideal container for

virtual objects is an electronic device that we carry with us all

day, which allows us to interact with objects at anywhere. We

selected the Android mobile platform for developing the

prototype because it is open source and devices that have this

operating system have characteristics of computing and

communication technologies, these features are sufficient to

ensure interaction with virtual objects.

 This application is able to interpret and work with any

virtual object built to specification.

A. Executable Code - Business logic.

In this model the actions associated with cinema ticket will

be:

 Show Movie Info: title, synopsis, images, etc.

 Show information about ticket: film, cinema, etc.

 Validate ticket: validation of the cinema ticket at the

intelligent door cinema.

The business logic is implemented in a code file as if it were

a conventional application. The virtual object can contain

multiple source files that implement the same business logic,

so that the devices running the object select the appropriate

code to run on the operating system. This prototype uses the

Java language for implementation, because we know that only

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-27-

runs on Android system. The implementation is done in

standard Java by inheriting the VirtualObject specific

class. The code will be dynamically loaded by the manager of

virtual objects, so that methods to be invoked must be declared

as public.

B. Data storage - Business logic.

Sometimes the business logic may require that some data

have a persistent nature. Virtual objects are simple models, so

they will not store many registers and will not require a

traditional database. To support persistent data they are

declared as key-value pairs in a specific file. From the

executable code one can easy access to the stored values, using

special methods (Code 1), which are implemented in the class

VirtualObject. This system achieves a simple and efficient

synchronization with the data store that is almost transparent to

the programmer.

In the case of the cinema ticket that we are implementing the

value "used" would be a persistent value.

// Validate Ticket.
public boolean useIt() throws Exception{

 // Data warehouse access . Key - used.

 boolean isUsed = loadDataBoolean("used");

 if(!isUsed){

 ...

 // Modify data warehouse . Key - used, Value - true

 saveDataBoolean("used",true);

 ...

}

Code 1. Java code. Access to the data warehouse using specific methods

contained in class VirtualObject.

C. Graphical interfaces - Interaction with people.

Graphic interfaces are the main form of interaction with the

virtual object, its use is to provide a simple visual environment

to enable communication between user and virtual object. The

user interfaces should belong to one of two types:

 Private: used by the person owning the host device.

 Public: can be added if you want other users to discover

and connect to the virtual object remotely.

Each XML file refers exclusively to a screen that can be

displayed during performance of the virtual object. To

describe the elements that appear on the screens and how they

behave, we have started from a smaller version of the syntax

used by the Android system [10], describing user interfaces in

a relative way, so they can be interpreted in the same

way regardless of the resolution or screen size of the device.

The elements that compose the graphic interface, define its

appearance and behavior using XML properties. These

properties can refer to methods in the executable code. (Figure

5).

Figure 5. Private graphical interface of the virtual subject: movie ticket.

The graphical interface displayed may be accessed and

modified in the executable code using special methods

implemented in class VirtualObject. With this functionality,

developers can implement changes in the graphic interface as a

result of actions (eg pressing a button).

In the case of the cinema ticket it has included a private

graphical interface, through which the owner of the ticket

could manage, and a public graphical interface that allows

other users to connect to the virtual object entry and see an

overview of film.

D. Service catalogs - Interaction with things/applications.

The virtual object can be accessed by other devices,

applications or virtual objects. The object publishes its catalog

of services in Web Services Description Language [11] and in

a specific API for the integration of virtual objects.

E. Descriptor – Configuration.

The descriptor file is an XML document which contains

information about the identity, configuration and

implementation of the virtual object. The information

contained is as follows:

 Identity Object: Name, Type, Unique Identifier (if it is

unique) and icon.

 Behavior of the object: If it is transferable, copyable or

editable, if you have an expiry date, etc.

 Interfaces: Name the main interfaces of the object.

 Executable code: Name of the source files that may

exist, at least there must be one. May also include the

name of the main class.

 Data: Name of file data store.

In the particular case of this movie ticket could be a valid

configuration file (Code 2).

<?xml version="1.0" encoding="UTF-8"?>

<virtualObject>

 <name>Ticket: Robot Movie</name>

Special Issue on Computer Science and Software Engineering

-28-

 <type>www.TicketVirtualObject.com</type>

 <id>47236271</id>

 <transferable>YES</transferable>

 <expiration>12-10-2009</expiration>

 <editable>NO</editable>

 <copy>NO</copy>

 <interface

 private="privateInterface.xml"

 public="publicInterface.xml"

 wsdl="interface.wsdl"></interface>

 <code

 android="robotMovie9780.apk"

 j2me="robotMovie9780.jar"></code>

 <data>info.obj</data>

 <mainClass>com.rmovie.Ticket</mainClass>

 <icon>icon_tiket.png</icon>

</virtualObject>

Code 2. Configuration file of the virtual object DDTS cinema ticket.

VII. USING VIRTUAL OBJECTS

Virtual objects DDTS are interpreted by an application

which we call DDTS Manager, which is responsible for

managing the virtual objects within a device. It must be

designed to be installed and run on the given device, taking

into account their characteristics, operating system, or

programming languages it supports. Objectives of the manager

are:

 Load, interpret and run any virtual object that has been

built following a proposed structure. The first step to

start using an object is to pick a manager, selecting the

object configuration file. Once loaded the user can start

interacting with the object, the manager interpret their

interfaces and execute the corresponding code.

 Store and manage virtual objects. We will often use

multiple virtual objects simultaneously; the manager

must provide mechanisms to store and manage. Virtual

objects that were loaded on the device must be

displayed in an orderly manner to the user, so that it can

interact with them and manage them, that is: delete,

copy or transfer provided that the nature of the subject

permits.

 Publish virtual objects and service catalogs. It can be

specified in the logic of the object that allows execution

of remote or publish their services, the manager has

mechanisms to support such protocols relying on

Bluetooth (Bluetooth, 2009), or other protocols such as:

Internet, wireless etc.

 Discovery and remote execution. The manager will be

able to discover the virtual objects that other devices

publish. Once discovered the virtual objects may be

performed remotely

A. Local execution

After the file of the virtual object is loaded into the

manager, you can open it. The outcome of the interpretation of

the virtual object is the main graphical interface through which

the user launches events involving invocations of the shares

included in the executable code of the virtual object. The most

important action of the object movie ticket is validated against

the server of cinema (Figure 6).

Figure 6. Local execution. The event ―touch button‖ causes the execution of

the action: validate the movie ticket.

B. Remote execution

Depending on the logic of the virtual object DDTS is

possible that this has to be used remotely by other people

besides the owner. The device operates as a virtual object

server, allowing other users to connect to it and run the virtual

object remotely.

To initiate the remote execution on virtual objects must be

"active" on the server device and be discovered by other client

devices using Bluetooth, Wi-Fi or other protocols. The client

device receives and interprets the main public graphical

interface. Each time the client starts an event; the server

receives a message and run the Corresponding code. The

execution on the server can lead to changes in current public

graphical interface as a result the server sends the new

interface for the client device. The operation is similar to a

web application server.

In this case the virtual input object accepts the possibility of

being discovered and accessed by other users. Remote access

is started discovering the virtual object on the device server,

and then the client interprets the main public graphic interface,

which contains images and the synopsis of the movie (Figure

7).

C. Virtual object behavior

The movie ticket has been modelled with the properties:

unique and transferable, therefore can be atomically

transferred between devices. The owner of the virtual object

can use DDST manager to find a device which transfers the

virtual object. The movie ticket will continue to have the same

functionality and state after device migration.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-29-

Figure 7. Remote Execution Process.

VIII. POTENTIAL USES

Nowadays, many objects, either real or virtual, are good

candidates to be re-designed as virtual objects. Thanks to these

changes we could an improvement in the lifestyle of people,

making it easier and automatizing many daily life tasks. Some

examples are the following:

 Tickets: cinema, train, parking, etc. The proposal offers

the possibility of storing them, for instance in our

Mobile or PDA, as if it was our digital Purse.

 Multimedia objects: product catalogs, intelligent

publicity, contact cards. The structure proposed offers

the possibility of creating Rich interfaces, including lots

of control, in sound, videos etc.

 Application generated resources: Shopping lists, events

and schedules, since it contains business logic and

services, a list cannot be limited to a series of numbered

products, it can be also provided with certain

intelligence and capacity to interact with other

applications or elements.

 Remote control: remote execution gives the ability to

communicate with devices that have been programmed

public interfaces, whether or not virtual objects. Thus a

single device can control a large number of elements.

IX. CONCLUSION

The benefits of the proposal on the current solution in the

modeling of virtual objects are:

 It unifies the way we build virtual objects with a

concrete structure, Strong enough to model complex

virtual objects.

 It is designed so devices with the suitable computation

ability can be executed or correctly interpreted in any

normalized virtual objet, it doesn‘t matter the object

logic or the device characteristics, (operative system,

resolution...).

 Easy development, using languages of general purpose

and widely extended formats for the construction of

virtual objects. It offers automatic support to main

properties which may define the object behavior.

 Strengthens and makes it easier the Communications

between virtual objects, users and application, the same

with the transfer or interchange of virtual objects.

 Virtual objects may have more ability to interact using

communication mechanisms and specific recognition of

mobile phones as cameras [12], GPS, sensors, etc.

REFERENCES

[1] Kranz, M. , Holleis, P., & Schmidt, A. (2010). Embedded interaction:

Interacting with the internet of things. IEEE Internet Computing, v 14,

n 2, (pp 46-53).

[2] Kortuem, G., Kawsar, F., Sundramoorthy, V., & Fitton, D. (2010).

Smart objects as building blocks for the internet of things. IEEE Internet

Computing, v 14, n 1, (pp 44-51).

[3] Lu, Y.(Ed.), Yan, Z .(Ed.), Laurence,T. Y.(Ed.), Huansheng ,N.

(Ed.). (2008). The Internet of Things: From RFID to the Next-

Generation Pervasive Networked Systems. (Ed.), Auerbach

Publications, Taylor & Francis Group.

[4] Global Trends 2025: A transformed world. (2008). Appendix F: The

Internet of Things (Background). SRI Consulting Business Intelligence.

[5] Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker, O.,

Souza, L. M., & Trifa, V. (2009). Soa-based integration of the internet

of things in enterprise services. IEEE International Conference on Web

Services, ICWS 2009, (pp 968-975).

[6] Fajardo, R., Miramá, V., Caicedo, 0. Mesa, J.& Martínez, F.O. (2008)

Descubrimiento e interacción de servicios móviles ubicuos utilizando

Bluetooth y Wi-Fi.

[7] Roger, S. (2005). RFID: A Brief Technology Analysis, CTO Network

Library.

http://www.rfidconsultation.eu/docs/ficheiros/RFID_analysis.pdf.

[8] Yeon-Seok,.K., & Kyong-Ho,L. (2007). A Light-weight Framework for

Hosting Web Services on Mobile Devices. Proceedings of the 5th IEEE

European Conference on Web Services, ECOWS 07, (pp 255-263).

[9] Android . (2010). From http://developer.android.com/

[10] User Interface Android. (2010).From

http://developer.android.com/guide/topics/ui/index.html.

[11] WSDL w3c Web Services Description Language.

http://www.w3.org/TR/wsdl.

[12] Rohs, M., Gfeller, B. (2004).Using camera-equipped mobile phones for

interacting with real-world objects. Advances in Pervasive Computing,

Austrian Computer Society (OCG).

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Lu%20Yan
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Yan%20Zhang
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Laurence%20T.%20Yang
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Huansheng%20Ning
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BSouza%2C+Luciana+Moreira+S%26%23225%3B+De%7D§ion1=AU&database=131073&yearselect=yearrange&sort=yr
http://www.ctonet.org/documents/RFID_analysis.pdf
http://developer.android.com/
http://developer.android.com/guide/topics/ui/index.html
http://www.w3.org/TR/wsdl

