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1 Introduction

We denote the Laplacian operator ∆ in Rn+1
+ by

∆ =
∂2

∂y2
+

n∑
i=1

∂2

∂x2i
,

and the corresponding gradient ∇ by

|∇u(x, y)|2 =
∣∣∣∣∂u∂y

∣∣∣∣2 + |∇xu(x, y)|2 ,

where

|∇xu(x, y)|2 =
n∑

i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2 .

1 recastillo@unal.edu.co



2 R. E. Castillo, On Sobolev trace inequality

In [2] and [3], Beckner and Escobar independently established the
following Sobolev theorem:

Theorem. Let f be a real–valued function, sufficiently smooth with
fast enough decay at infinity, (x, t) ∈ Rn × (0, t) = Rn+1

+ , n ≥ 2. Let

ϕ(x, t) =
Γ((n+ 1)/2)

π(n+1)/2

∫
Rn

(|x− y|2 + t2)−
n+1
2 t f(y) dy .

Then

(∫
Rn

|f(x)|
2n
n−1 dx

)n−1
n

≤ 1√
π(n− 1)

(
Γ(n)

Γ(n/2)

) 1
n

×
∫
Rn

|∇ϕ(x, t)|2 dx dt . (1)

The equality in (1) occurs only if f has the form c
(
|x− x0|2 + t20

)(n−1)/2

for c ∈ R and (x0, t0) ∈ Rn+1
+ .

In order to prove this optimal estimate, both authors used the con-
formally equivalent model Sn of Rn+1

+ as a tool, but their methods are
quite different: In [1] Beckner verified the result via certain cases of the
sharp Hardy–Littlewood inequality on Sn; while in [2] Escobar obtained
the result by finding the minimizer of the Sobolev quotient in Sn subject
to its associated Euler–Lagrange equation. In this paper we shall give
an analogue of [1] for fractional derivatives.

2 Preliminaries

In this section we include several lemmas that will be used throughout
the paper.

Lemma 2.1. Suppose u is a harmonic strictly positive function. Then

∆up = p (p− 1)up−2 |∇u|2 ,

for 1 < p < ∞.
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Proof. Note that for 1 < p < ∞ we have

n∑
i=1

∂2up

∂x2i
= p (p− 1)up−2

n∑
i=1

(
∂u

∂xi

)
+ p up−1

n∑
i=1

∂2u

∂x2i
,

and

∂2up

∂x2i
= p (p− 1)up−2

(
∂u

∂xi

)
+ p up−1 ∂

2u

∂x2i
.

Thus

∆up =
∂2up

∂y2
+

n∑
i=1

∂2up

∂x2i

= p (p− 1)up−2

[∣∣∣∣∂u∂y
∣∣∣∣2 + n∑

i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2
]
+ p up−1∆u .

Since u is harmonic, we have

∆up = p (p− 1)up−2 |∇u|2 .

Lemma 2.2. Suppose F (x, y) is a continuous function of class C2 in
Rn+1
+ which is sufficiently small at infinity. Then

∫
Rn+1
+

y∆F (x, y) dx dy =

∫
Rn+1
+

F (x, 0) dx . (2)

Proof. Let D = Br ∩Rn+1
+ with Br the ball of radius r in Rn+1

+ centered
at the origin.

We take v = F and u = y in the Green formula. Then we will obtain
our result (2) if

∫
D

y∆F (x, y) dx dy →
∫
Rn+1
+

y∆F (x, y, ) dx dy ,



4 R. E. Castillo, On Sobolev trace inequality

and

∫
∂D0

(
y
∂F

∂v
− ∂y

∂v
F

)
dσ → 0 as r → 0 .

Here ∂D0 is the spherical part of the boundary of D. This will certainly
be the case if, for instance, ∆F ≥ 0, |F | ≤ 0(|x|+ |y|) and

|∇F | = 0 (|x|+ |y|)−n−1−ε as |x|+ |y| → ∞ ,

for some ε > 0. Then, using the Green formula

∫
D
(u∆v − v∆u) dx dy =

∫
∂D

[
u
∂v

∂ν
− v

∂u

∂ν

]
dσ .

We obtain

∫
Rn+1
+

y∆F (x, y) dx dy =

∫
Rn+1
+

F (x, y)∆y dx dy

=

∫
Rn
+

∫
R+

F (x, y)∆y dy dx

= −
∫
Rn

∫ ∞

0
DF (x, y) · Dy dy dx

=

∫
Rn

−[F (x, ∞)− F (x, 0)] dx

=

∫
Rn

F (x, 0) dx .

Lemma 2.3. Let f be a function with compact support on Br(0). If
u(x, y) is the Poisson integral of f , then

sup
y>0

|u(x, y)| ≤ M f(x) ,

where

M f(x) = sup
r>0

1

m (Br(x))

∫
Br(x)

|f(y)| dy .
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Proof. Observe that

u(x, y) =

∫
Rn

F (x− z)P (z, y) dz

=

∫
Rn

F (z)P (x− z, y) dz ,

where

P (z, y) =
y

cn

(
|zn|2 + y2

)(n+1)/2
.

Let r > 0. Then

|P (z, r)| =
r

cn

(
|zn|2 + r2

)(n+1)/2

≤ r

cnrn+1
=

1

cnrn
.

In this latter case, we have

|u(x, r)| ≤
∫
Br(0

|f(z)| |P (x− z, r)| dz

≤ 1

cnrn

∫
Br(0)

|f(z)| dz

≤ 1

mBr(0)

∫
Br(0)

(|f(z)| dz .

Therefore

sup
y>0

|u(x, y)| ≤ M f(x) .

Lemma 2.4. Let f ∈ Lp with 1 < p ≤ 2 and

g(f)(x) =

(∫ ∞

0
y |∇u(x, y)|2 dy

) 1
2

.
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Then

||g(f)||p ≤ Ap ||f ||p .

Proof.

[g(f)(x)]2 =

∫ ∞

0
y |∇u(x, y)|2 dy

=
1

p(p− 1)

∫ ∞

0
y u2−p∆up dy

≤ 1

p(p− 1)
(M f(x))2−p

∫ ∞

0
y∆up dy ,

g(f)(x) ≤ Cp (M f(x))(2−p)/2 [I(x)]1/2 ,

where I(x) =
∫∞
0 y∆up(x, y)dy. However, by the Theorem 1(c) in [4, p.

62], we have

∫
Rn
+

I(x) dx =

∫
Rn
+

∫ ∞

0
y∆up dy dx

=

∫
Rn+1
+

y∆up dy dx

=

∫
Rn

up (x, 0) dx

= lim
y→

∫
Rn

up(x, y) dx

= ||f ||rp .

Then, if p = 2, we have

[g(f)(x)]2 ≤ C2 I(x)∫
Rn

|g(f)(x)|2 dx ≤ C2

∫
Rn

I(x)dx∫
Rn

|g(f)(x)|2 dx ≤ C2 ||f ||22(∫
Rn

|g(f)(x)|2 dx
) 1

2

≤ C2 ||f ||22

||g(f)||2 ≤ C2 ||f ||2 .
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Suppose now 1 < p < 2, then

(g(f)(x))p ≤ Cp (M f(x))p(2−p)/2 [I(x)]p/2 .

Take r = 2
2−p and r

′
= 2

p . Then, by the Hölder inequality, we have

∫
Rn

[(g(f)(x)]p dx ≤ Cp

∫
Rn

[M f(x)]p(2−p)/2 [I(x)]p/2 dx

≤ C ′
p

(∫
Rn

[M f(x)]p dx

) 1
r
(∫

Rn

I(x) dx

) 1
r′

≤ C ||f ||p/rp ||f ||p/r′p

= C ||f ||pp .

Thus we have proved that

||g(f)||p ≤ Cp ||f ||p for 1 < p ≤ 2 ,

whenever f is a positive function which is indefinitely differentiable and
of compact support.

In general, for f ∈ Lp (Rn) (which we assume for simplicity to be real
valued) write f+ − f−, we only need to approximate in norm f+ and
f−, each by a sequences of positive indefinitely differentiable functions
with compact support. We omit the routine details that are needed to
complete the proof.

Remark. It is unfortunate that the just given elegant argument is
not valid for p > 2.

3 Main result

To state our main result, let us introduce some notation. For x =
(x1, · · · , xn), y = (y1, · · · , yn) ∈ Rn we define x · y =

∑n
i=1 xiyi and

f̂(x) =

∫
Rn

f(y) exp(−2π i x · y) dy ,

and f∨(x) = f̂(−x) the Fourier transform and the inverse Fourier trans-
form of an integrable function f , respectively. Furthermore, given α ∈
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(0, 1), H̊α (Rn) is the homogeneous fractional order Sobolev space —the
completion of all infinitely differential functions f with compact support
in Rn under the norm

|f |H̊α(Rn) =

(∫
Rn

∣∣∣(−∆)α/2 f(x)
∣∣∣2 dx

) 1
2

< ∞ ;

where

(−∆)α/2 f(x) =
(
(2π | • |)α f̂(•)

)ν
(x) ,

stands for the derivative of f of orderr α at x ∈ Rn.

Theorem 3.1. Let n ≥ 2 and α ∈ (0, 1). If f ∈ H̊α (R), then

(∫
Rn

|f(x)|
2n

n−2α dx

)n−2α
n

≤ C(n, α)

∫
Rn+1
+

|∇ϕ(x, t)|2 t1−2α dx dt ,

(3)

where

C(n, α) =

(
21−4α

παΓ(2(1− α))

) (
Γ((n− 2α)/2)

Γ((n+ 2α)/2)

) (
Γ(n)

Γ(n/2)

) 2α
n

.

The equality in (3) holds if and only if f(x) = c(|x− x0|2 + t20) for c ∈ C
and (x0, t0) ∈ Rn+1

+ .

To prove the Theorem 3.1, we need the Lieb’s sharp version (see
[3]) of the Hardy–Littlewood–Sobolev inequality. For the norm of the
Lebesque space Lp (Rn), p > 1, we use the simple notation

||f ||p =
(∫

Rn

|f(x)|p dx
) 1

p

.

Lemma 3.2. Let λ ∈ (0, n) and f, g ∈ L 2n
2n−λ

(Rn). Then

∣∣∣∣∫
Rn

∫
Rn

f(x)g(y)

|x− y|λ
dx dy

∣∣∣∣
≤ πλ/2Γ((n− λ)/2)

Γ(n− λ/2)

(
Γ(n/2)

Γ(n)

)λ−n
2

||f || 2n
2n−λ

||g|| 2n
2n−λ

. (4)
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where the equation (4) holds if and only if f and g can be written as
c(|x− x0|2 + t0)

(λ−2n)/2 for c ∈ C and (x0, t0) ∈ Rn+1
+

Proof of Theorem 3.1. First of all, note that

ϕ(x, t) =

∫
Rn

f̂(y) exp(−2π (i y · x+ |y| t)) dy .

Thus, differentiating and integrating (see [4], p. 83) we have

∫
Rn

|∇ϕ(x, t)|2 dx = 8π2

∫
Rn

|x|2
∣∣∣f̂(x)∣∣∣2 e−4π|x|t dx ,

and

∫ ∞

0

∫
Rn

|∇ϕ(x, t)|2 t1−2α dx dt

= 8π2

∫ ∞

0

∫
Rn

|x|2
∣∣∣f̂(x)∣∣∣2 t1−2α e−4π|x|t dx dt .

By the Fubini theorem

∫
Rn+1

|∇ϕ(x, t)|2 t1−2α dx dt

= 8π2

∫
Rn

(∫ ∞

0
t1−2α e−4π|x|t dt

)
|x|2

∣∣∣f̂(x)∣∣∣2 dx

= 8π2

∫
Rn

(∫ ∞

0

(
y

4π|x|

)1−2α

e−y dy

4π|x|

)
|x|2

∣∣∣f̂(x)∣∣∣2 dx

=
8π2

(4π)2(1−α)

∫
Rn

(∫ ∞

0
y1−2α e−y dy

)
|x|2α

∣∣∣f̂(x)∣∣∣2 dx

=
8π2

(4π)2(1−α)
Γ(1− 2α)

∫
Rn

|x|2α
∣∣∣f̂(x)∣∣∣2 dx ,

1

Γ(1− 2α)

∫
Rn+1

|∇ϕ(x, t)|2 t1−2α dx dt

=
8π2

(4π)2(1−α)

∫
Rn

|x|2α
∣∣∣f̂(x)∣∣∣2 dx . (5)
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This identity together with ̂(−∆)α/2f(x) = (2π|x|)αf̂(x), more or less
explains why we refer to (3) as a Sobolev trace inequality for fractional
derivatives. Next, writing

〈f, g〉 =
∫
Rn

f(x) ḡ(x) dx ,

for the dual product between two functions f and g on Rn, we employ
the Parseval formula and the Cauchy–Schwarz inequality to obtain

| 〈f, g〉 | =
∣∣∣〈f̂ , ĝ〉∣∣∣

≤
(∫

Rn

|x|2α
∣∣∣f̂(x)∣∣∣2 dx

) 1
2
(∫

Rn

|x|−2α |ĝ(x)|2 dx

) 1
2

.

(6)

Let us now observe that

∫
Rn

|x|−2α |ĝ(x)|2 dx

= π2α−n/2 Γ((n− 2α)/2)

Γ(α)

∫
Rn

∫
Rn

g(x)ḡ(y)

|x− y|n−2α
dx dy ; (7)

see [3], Corollary 6.10. Thus, by (4) (where λ = n− 2α), (6) and (7) we
conclude that

| 〈f, g〉 | ≤
(∫

Rn

|x|2α
∣∣∣f̂(x)∣∣∣2 dx

) 1
2

πα/2

(
Γ((n− 2α)/2)

Γ((n+ 2α)/2)

) 1
2

×
(

Γ(n)

Γ(n/2)

)α
n

||g|| 2n
n+2α

. (8)

This equation together with g = f |f |
4α

(n−2α) , f ∈ H̊α (Rn) and (5) implies
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||f || 2n
n−2α

≤ πα/2

(
Γ((n− 2α)/2)

Γ((n+ 2α)/2)

) (
Γ(n)

Γ(n/2)

)α
n

×
(∫

Rn

|x|2α
∣∣∣f̂(x)∣∣∣2 dx

) 1
2

=

(
21−4α

παΓ(2(1− α))

) 1
2
(
Γ((n− 2α)/2)

Γ((n+ 2α)/2)

) 1
2

×
(

Γ(n)

Γ(n/2)

)α
n
(∫

Rn+1

|∇ϕ(x, t)|2 t1−2α dx dt

) 1
2

. (9)

Finally, from (6)-(9) and Lemma 3.2 (with λ = n− 2α) we can see that
if the equality in (3) holds then

|f(x)|
n+2α
n−2α = C0

(
|x− x0|2 + t0

)−n+2α
2

,

for C0 ≥ 0 and (x, t0) ∈ Rn+1
+ . This is just the desired function. On the

other hand, a change of variables implies that if φ(x) = λx+x0 for λ > 0
and x0 ∈ Rn then

(∫
Rn

|f(φ(x))|
2n

n−2αdx

)n−2α
n

=

(
1

λn

∫
Rn

|f(x)|
2n

n−2αdx

)n−2α
n

, (10)

and

∫
Rn+1

|∇ϕ(φ(x, t))|2 t1−2α dx dt = λ2α−n

∫
Rn+1

|∇ϕ(x, t)|2 t1−2α dx dt ,

(11)

since a straightforward computation with (5) at both sides of (3) yields
that the equality in (5) is valid for f(x) = (1+|x|2)(2α−n)/2. We conclude
from (10) and (11) that the equality in (5) is also true for the general
functions described in Theorem 3.1. Now, the proof is complete.

Finally, let us distinguish the final cases:

1.α = 0. Let us observe that
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∫
Rn+1
+

|∇ϕ(x, t)|2 t dx dt =
1

2

∫
Rn+1
+

t∆f2(x, t) dx dt

=
1

2

∫
Rn

f2(x, 0) dx

=
1

2
lim
t→0

∫
Rn

f2(x, t) dx

=
1

2

∫
Rn

|f(x)|2 dx

=
1

2

∫
Rn

∣∣∣f̂(x)∣∣∣2 dx .

2.α = 1 (which forces n > 2). Since

lim
α→1

∫
Rn+1
+

|ϕ(x, t)|2 t1−2αdxdt

2Γ(1− α)
= 4π2

∫
Rn

(
|x|
∣∣∣f̂(x)∣∣∣)2 dx

=

∫
Rn

|∇ϕ(x)|2 dx .

The Theorem 3.1 naturally reduces to the Sobolev inequality

(∫
Rn

|f(x)|
2n
n−2 dx

)n−2
n

≤
(

1

πn(n− 2)

) (
Γ(n)

Γ (n/2)

) 2
n
∫
Rn

|∇ϕ(x)|2 dx ,

(12)

where the equality in (12) holds if and only if f(x) = c(|x − x0|2 +
t0)

−(n−2)/2 for c ∈ C and (x0, t0) ∈ Rn+1
+ .
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