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ABSTRACT 
In this paper we formulate Markov Decision Processes with Random Horizon. We show the optimality equation for 
this problem, however there may not exist optimal stationary strategies. For the MDP (Markov–Decision–Process), 
with probability distribution for the planning horizon with infinite support, we show Turnpike Planning Horizon 
Theorem. We develop an algorithm obtaining an optimal first stage decision. We give some numerical examples. 
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RESUMEN 
En este trabajo formulamos un Proceso de Decisión Markoviano con Horizonte Aleatorio. Desarrollamos la ecuación 
de optimalidad para este problema, sin embargo puede no existir estrategias optimales estacionarias. Para el MDP 
(Proceso de Decisión Markoviano), con distribución de probabilidad para horizonte de planeamiento con soporte 
infinito, demostramos el Teorema de Horizonte de Planeamiento de  Turnpike. Desarrollamos un algoritmo para  
obtener una decisión de primera etapa optimal.  Damos algunos ejemplos numéricos.   

 
1. INTRODUCTION 
 
A multiperiod optimization problem is often modeled as an infinite horizon problem when its horizon 
is long sufficiently. We do not necessarily know the horizon of the problem in advance since we can  
not predict the future precisely. For example, we imagine vaguely that a drastic change of a project 
may occur some day, and we only believe when its change will occur under a certain probability 
distribution. Thus it is not appropriate that we simply model the problem as an infinite or a fixed finite 
horizon case.  
 
If the planning horizon changes may cause a remarkable change of optimal strategy, and the total 
reward may differ much. Hence, it is necessary to make a decision considering   the   probability  of  
the  time  at  which  the project will end. We formulate these problems using MDPs in which 
probability distributions for the planning horizon are given in advance, that is, MDP with Random 
Horizon. In this paper we will consider non – homogeneous MDPs. 
 
It is known one typical example with a geometrically distributed planning horizon, which is equivalent 
to an ordinary discounted MDP (Ross [9]). We can notice that the discount  rate represents an 
evaluation of uncertainty expected   to be happened in the future. Numerous researches have been made 
for the type of MDP  which has variable discount rates (White [12], Puterman [8], Sondik [12]. 
 
In the MDP with random horizon there may not exist an optimal stationary strategy. When the support 
of the probability distribution for the planning horizon is finite, we can easily get an optimal strategy by 
solving the corresponding optimality equation. When the support of the probability distribution for the 
planning horizon is infinite, it is difficult to solve   the   problem. So we adopt a rolling horizon strategy 
to obtain an optimal strategy, that is, first we obtain the Turnpike Planning horizon for MDP and solve 
the problem under its horizon. Shapiro [11] shows the existence of the Turnpike Planning Horizon for 
the homogeneous discounted MDP. 
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This paper is related to the researches of Bean and Smith [2]. They treats deterministic decision 
problems. In addition Hopp, Bean and Smith [7] considers the condition for the existence of an optimal 
strategy for the non – homogeneous non – discounted MDP under   a  weak ergodicity  assumption. 
In Section 2, the model is described in detail and some assumptions are provided. We derive the 
optimality equation for the MDP with random horizon. In this section the optimal problem is 
formulated as MDP. 
 
In Section 3 we describe the structure and nature of an optimal strategy in the case that the support of 
the probability distribution for the planning horizon is infinite. In section 4 we give an algorithm for 
solving the problem based on the nature derived in section 3. In   section  5  some   conclusions  are  
provided. 
 
2. MODEL DESCRIPTION AND ASSUMPTIONS. 
 
Let (Ω,F,P) denote the underlying probability space. Let { }0,1,2,T = K  be the set of nonnegative 
integers. We consider a discrete – time non – homogeneous Markov   Decision   Model   with  

(i) Countable   state space S, 
(ii) measurable action space A endowed with σ-field, A containing all one-point subsets of A. 
(iii) sets  of  action  ( )A s  available  at s S∈ , where ( )A s  is  an  element  of  A, 

(iv) transition probabilities ( ){ }| ,tp j i α  at state t , t T∈ ,where ( )| ,tp j i α  is 

nonnegative and measurable in a , and for each i S∈ , ( )a A s∈ , 

( )| , 1t
j S

p j i a
∈

=∑ , t T∈ , 

(v) sets of reward functions ( ){ },tr i a  at stage t , t T∈ , where the function ( ),tr i a  is 
measurable in a , 

(vi) sets of salvage cost functions ( ){ },tc i a  when the project end at stage t , t T∈ , where 

the function ( ),tc i a  is measurable in a . The salvage cost is the incurred cost to stop the 
project and may depend on the state and action at that stage. 

 
Assumption 2.1.For each stage, reward functions and salvage cost functions are assumed to be 
bounded, that is,  

( ),tr s a R≤ < +∞ ,  ( ),tc s a C≤ < +∞  

 
Let a function :ta S A→ , t T∈  be a decision function with ( ) ( )t t ta s A s∈ . The sequence 

( ),ta t Tδ = ∈  is called a strategy. Let Δ  denote the set of all strategies. We also use the notation 

( )0 1 1, , ,n nδ δ δ δ −= K  to represent first n  decisions in δ . In   this   model, we also set, 

(vii) a   probability distribution tf  with which the project end at stage t , t T∈ . 
 

Also we consider an absorbing state 's  representing the end state of project and let { }' 'S S s= ∪ . 
Then we add   next   three   to   the   above (iii), (iv) and (v),  

(iii)΄ ( ) { }'A s a= , 

(iv)΄ for any j S∈ , all t T∈ , ( )| , 0tp j s΄ a΄ = , ( )' | , 1tp s s΄ a΄ = , 

(v) ΄ for all t T∈ , ( ),tr s΄ a΄ o=  
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Let ( )t
tH S A΄ S΄= × ×  be the space of histories up to the stage { }t T∈ ∪ ∞ , where 

{ }A΄ A a΄= ∪ . If a strategy δ ∈Δ  and initial state s  are specified, transition probabilities are 

determined completely. Accordingly a probability measure sPδ
 is induced. 

 

Let tx  denote the state of process at state t , M denote the random planning horizon with distribution 

tϕ , tA  denote the action taken at state t , then the expected total  reward  for  the  n -horizon  problem  
is  given  by  

( )
( )
( )

, ,
, , ,

0

t t t t

t t t t t t t

t

r X A when X S t M
R X A c X A when X S t M

when X S΄

∈ <⎧
⎪= ∈ =⎨
⎪ ∈⎩

 .                                                          (2.1) 

 
Considering the n -horizon problem, for a fixed n , when the process starts with an initial   state s  
under a strategy δ , the expected total reward for this problem is given by 

( ) ( )
0

, , ,
n

s t t t
t

V s n E R X Aδδ
=

= ∑  ,                                                                          (2.2) 

where sEδ
is the corresponding expectation operator. We notice that the expected reward  ( ), ,V s nδ   

depends  only  on  the first n  decisions nδ  in each δ . 
 
Now, we can describe the n -horizon and M-horizon optimal decision problem. The n -horizon 
problem is defined as  

( ) ( )
0

sup , , ,
n

n t t t
t

V s n E R X Aδ

δ
δ

∈Δ =

⎧ ⎫
=⎨ ⎬

⎩ ⎭
∑  for  each  s .                                                          (2.3) 

A strategy ( )* nδ ∈Δ  is called an optimal strategy for the n -horizon problem if for each s S∈ , 

( )( ) ( )*, , sup , ,V s n n V s n
δ

δ δ
∈Δ

= . 

For the random M-horizon problem, we set  

( ) ( )
0

, ,
n

s t t t
t

V s E R X Aδδ
=

= ∑ .                                                                                                         (2.4) 

It should be also noted that an optimal strategy for n -horizon problem depends only on the first n  
decisions in each δ . 
 
Similarly a strategy *δ ∈Δ  is called an optimal strategy for the random M-horizon problem if for 

each s S∈ , ( ) ( )*, sup ,V s V s
δ

δ δ
∈Δ

= . 

 
Let ε  be an arbitrary nonnegative constant. Then a strategy ( )*

t nδ  is called ε  - optimal   strategy   

for   the  n -horizon  problem   if   for   each   s S∈ ,  

( )( ) ( )( )* *, , , ,V s n n V s n nεδ δ ε≥ − .                                                                                       (2.5) 

 

Now we consider the optimality equation for the MDP with random horizon. Let tb  be a probability 

which the project is still continuing at stage ( )1t +  under condition   that    it   has   continued   until 
stage t , that   is, 
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1
1

1

1

1

t

t tb
κ

κ

κ
κ

φ

φ

=
−

=

−
=

−

∑

∑
.                                                                                                                     (2.6) 

 
When the process is in state i  and action a  is used at stage t , the expected reward we get is 

( ) ( ) ( ) ( ), , 1 ,t t t t td i a b r i a b c i a= ⋅ + − ⋅ .                                                                                      (2.7) 
 

Now, let ( )*
tv i  denote the maximal value  which we can get after the stage t  when the process is in 

state i , at stage t . Therefore we can get the optimality equation as follows, 

( ) ( ) ( ) ( )* *
1

max , | ,t t t ta A j S
t

v i d i a b p j i a v j
∈

∈
+

⎧ ⎫
= + ⋅ ⋅⎨ ⎬

⎩ ⎭
∑ .                                                          (2.8) 

 
When the support of  the  probability distribution for the planning horizon is finite, we can easily obtain 
the solution of the problem as in an ordinary finite horizon, by applying the backward induction 
method to the optimality equation (2.8) with setting  

( )
( )

( )* max ,n na A i
v i c i a

∈
= , for all i S∈ ,                                                                                        (2.9) 

 where n  is   a   maximal   value   of   the   support   of  { },t t Tφ ∈ . 
 
3. OPTIMAL STRATEGIES WHEN THE SUPPORT OF THE PROBABILITY 
DISTRIBUTION FOR THE PLANNING HORIZON IS INFINITE. 
 
In this section we discuss the MDPs with random horizon  which have the infinite support of the 
probability distribution for the planning horizon. We discuss the problem based on the idea that if the 
optimal strategies for the finite horizon problem approach a particular strategy for the   infinite support 
problem, we will consider that strategy as the optimal one. Works of  Hopp, Bean and Smith [7], Bes 
and Sethi [3] are based on this idea, too. 
 
We now define a metric topology on the set of all strategies Δ . The metric ρ  below is the same one 
which Bean and Smith  [2] uses  

( ) ( )
1

, 2 ,n
n

n

΄ρ δ δ σ δ δ
∞

−

=

′ = ⋅∑ , 

where  ( ) ( ) ( )
( ) ( )

'

'

1
,

0
n n

n
n n

a x a x x S
΄

a x a x x S
σ δ δ

⎧ ≠ ∃ ∈⎪= ⎨ = ∀ ∈⎪⎩
 

 
The ρ  metric has the property that any two strategies that agree in the first M policies, for any M, are 
considered closer than any two strategies that do not. 
 
Now   we define 
 
Definition 3.1.A strategy %δ ∈Δ  is periodic forecast horizon (PFH) optimal if for some subsequence 

of the integers { } 1m m
M ∞

=
, ( ) %*

mMδ δ→  in the ρ  metric as m →∞ . 
 
Proposition 3.1. ( ),ρΔ is a metric space. If ( ), 1ρ δ δ ε′ < <  for all 2logn ε≤ −  '

n nα α= . 
 
Proof. See Bean and Smith [2]           □ 
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Assumption 3.1.We assume that the strategy Space,Δ , is compact in metric space generated by ρ . 
This assumption precludes the possibility of a sequence of feasible strategies converging to an 
infeasible strategy. For further discussion of a related problem, see Bean and Smith [2]. 
Let { }t taΔ =  for all t T∈ . We define the discrete topology ( ) ( )' ', 2 ,t

t t t t t tp a a a aσ−= ⋅  on 

them. Then the theorem below holds. 
 
Theorem 3.2.Δ   is compact if and only if t T∀ ∈ , tΔ  are finite sets. If Δ  is compact, then each 

cylinder subset of Δ  is compact. 
 
Proof. See [3]                       □ 
 
Theorem 3.3.A periodic forecast horizon optimal strategy exists for the nonhomogeneous   Markov   
decision   process. 
 
Proof.  

Compactness of Δ  implies that the sequence ( ){ }*

1m m
Mδ

∞

=
 has a convergent subsequence. The limit 

of such a sequence is PFH optimal by definition (3.1). When S  and A  are finite sets, a compactness 
of Δ  is ensured.  
 
From   the   definition of ( ),V s a , we have the following proposition.  
 
Proposition 3.3.When the expectation of the planning horizon is finite, the total expected   reward is 
finite. 
 
Proof. 
 
 Since the expectation of the planning horizon, ( )E M , is finite,  

1
t

t
t ϕ

∞

=

⋅ < +∞∑ .                                                                                                                                   (3.1) 

Then, δ∀ ∈Δ , 

( ) ( )
0

, , ,
N

s t t t
t

V s M E R X Aδδ
=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑  

                       

( ) [ ] ( ) [ ]
1 1

, ,s t t t s t t t
t t

E r X A M t P M t E c X A M t P M tδ δ
∞ ∞

= =

⎡ ⎤ ⎡ ⎤= > ⋅ > + = ⋅ =⎣ ⎦ ⎣ ⎦∑ ∑  

              < { } { } ( )
1

1 1 1
max , 1 max ,

t

t t
R C R C tκ κ

κ

ϕ ϕ
∞ − ∞

= = =

⎛ ⎞
⋅ − = ⋅ ⋅⎜ ⎟

⎝ ⎠
∑ ∑ ∑ . 

Thus  from  (3.1), ( ), ,V s Mδ < +∞ .                  □ 
 
Assumption 3.4. The   expectation   of   the   planning   horizon   is   finite. 
 
Now we can discuss the existence of optimal strategy for the MDP with random horizon and infinite 
support. 
 
Lemma 3.5. ( ),V s δ  is continuous in δ ∈Δ . 
 
Proof. 
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 For any 0ε > , there exists Λ , such that { }
1

1 1

max ,
2

t

t

R C bκ
κ

ε−∞

=Λ+ =

⋅ <∑ ∏ .  

Therefore we get a v  such that 2log vΛ ≤ − . Then for any 'δ ∈Δ  such that ( ), ' vρ δ δ < ,  

( ) ( ) ( ) ( )'

1 1
, , ' , ,

M M

s t t t s t t t
t t

V s V s E R X A E R X Aδ δδ δ
= =

⎡ ⎤ ⎡ ⎤− = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  

( ) [ ] ( ) [ ]
1 1

, ,s t t t s t t t
t t

E r X A M t P M t E c X A M t P M tδ δ
∞ ∞

=Μ+ =Μ+

⎡ ⎤ ⎡ ⎤= > ⋅ > + = ⋅ =⎣ ⎦ ⎣ ⎦∑ ∑  

( ) [ ] ( ) [ ]' '

1 1
, ,s t t t s t t t

t M t M
E r X A M t P M t E c X A M t P M tδ δ

∞ ∞

= + = +

⎡ ⎤ ⎡ ⎤− > ⋅ > − = ⋅ =⎣ ⎦ ⎣ ⎦∑ ∑  

≤ { }
1

1 1

2 max , .
t

t M
R C bκ

κ

ε
−∞

= + =

<∑ ∏             

 
Let now ( )* nδ ∈Δ  be an optimal strategy for n -horizon problem and Δ  be a set of cluster points of 

all the sequences ( ){ }* nδ , that is, a set of PFH – optimal strategies and let { }t tα δΔ = ∈Δ , t T∈ .  

Note that since ( ), ,V s nδ  is continuous in n  and Δ  is compact,Δ  is a nonempty set. 
 
Theorem  3.6 (existence). Under assumptions 2.1, 3.1 and 3.4 there exists a PFH – optimal strategy for 
the MDP with random horizon. 
 
Proof.  
 
Since Δ  is compact, ( ),V s δ  is uniformly continuous on Δ . Thus there exists a   strategy *δ ∈Δ  

such that  ( ) ( )*, max ,V s V s
δ

δ δ
∈Δ

=  . Therefore there exists a PFH – optimal strategy for the MDP 

with random horizon *δ ∈Δ . 
 
Lemma 3.7. ( ) ( )lim max , , max ,n V s n V sδ δδ δ→∞ ∈Δ ∈Δ=  
Proof.  

Let { }
1

1 1

max ,
t

n
t n

K R C bκ
κ

−∞

= + =

= ∑∏ , then we have  

( ) ( ) ( )max , max , , max ,n nV s K V s n V s K
δ δ δ

δ δ δ
∈Δ ∈Δ ∈Δ

− ≤ ≤ +  

Thus since 0nK →  as n →∞ , ( ) ( )lim max , , max ,
n

V s n V s
δ δ

δ δ
→∞ ∈Δ ∈Δ

=         □ 

Let  *Δ  denotes a set of all optimal strategies *δ ∈ *Δ  for the MDP with random horizon. 
 
Lemma 3.8. *Δ ⊂ Δ  
 
Proof.  
 

Let *δ ∈Δ . From the definition there exists a sequence of strategies ( )( ){ }*

j T
m jδ

∈
such that       

 ( )( )* *lim
j

m jδ δ
→∞

= . 

 Thus ( )( ) ( )( ) ( )* *lim , , ,
j

V s m j m j V sδ δ
→∞

= . 
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 Since  from   lemma   (3.7) ( ) ( )*, max ,V s V s
δ

δ δ
∈Δ

= , * *δ ∈Δ .         □ 

 
There may not necessarily exists a stationary deterministic strategy or stationary randomized strategy 
for the MDP with random horizon. There may not exist even an  ε - optimal randomized tationary 
strategy. We show an example. 
 
Example. Consider the homogeneous model with { }1, 2S =  and { },A a b= . Let 

( ) ( )1| , 2 | , 1p s a p s b= = , for 1, 2s = . 

( )1, 1r a = , ( ) ( )1, 2, 0r b r a= = , ( )2, 2r b = . 

( ), 0c s x = ,  for 1, 2s = , ,x a b= . 
 
We denote the probability distribution for the planning horizon { }tϕ  as follows, 
 

( )
( ) ( )

( ) ( ) ( )

1

1 1
2 2

1 2 2

0
1 1

1 1 2
t

t

when t
when t

when t

β
φ β β

β β β−

⎧ =
⎪⎪= − =⎨
⎪

− − ≥⎪⎩

, 

that is, the geometric distribution of which parameter changes to 2β  from 1β  at stage 2.  In this 

model, it is clear that action b  is optimal at state 2. Thus there are two candidates for optimal 
deterministic stationary strategy as follows, 
 

'δ : keep your state (use action at state 1 and action b at state 2), 
''δ :move to state 2 and keep it (use only action b ). 

 
We shall examine an optimal randomized stationary strategy for this model. A randomized stationary 
strategy δ  is defined as  

( )|1a aδ = ,  ( )| 2aδ τ=  
 
When 2t ≥ , this model is equivalent to the MDP with discount rate 21 β− . Therefore the expected 

reward ( )2 ,v s δ , 1, 2s = , is the unique solution of the system of  the  following  linear  equations,  
 

( ) ( ) ( )( ) ( ) ( ){ }
( ) ( ) ( ) ( )( ){ }

2 2 2 2

2 2 2 2

1, 1 1 1, 1 2,
.

2, 1 . (1, ) 1 2 2,

v v v

v v v

δ β α δ α δ

δ β τ δ τ δ

⎧ = − + + −⎪
⎨

= − + − +⎪⎩
 

 
Solving the equations, we have 
 

(a) 

( )
( ) ( ) ( )( )

( )( ) ( )( )( )
( ) ( ) ( )( )

2 2

2 2 2 2

2 2

2 2

1, 1
2, 1 1 1

1 1 2 1 1 1
1 2 1 2 1 1

v
v

a a a
a a

δ β
δ β α β τ β

τ β τ β
τ β τ τ β

⎛ ⎞ −
= ×⎜ ⎟

− − + −⎝ ⎠

− − − + − − −⎛ ⎞
⎜ ⎟− + − − − −⎝ ⎠

 

 
Similarly,  
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( ) ( ) ( )( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( )( ){ }

1 1 2 2

2 1 2 2

1, 1 1 1, 1 2,
.

2, 1 1, 1 2 2,

v v v

v v v

δ β α δ α δ

δ β τ δ τ δ

⎧ = − − + −⎪
⎨

= − + − +⎪⎩
 

so that  

( ) ( ) ( )( ) ( ) ( ){ }
( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

0 1 1 1

2 22
1 1 1

2 22
1 2 1 2

1, 1 1 1, 1 2,

1 1 2 1 1 1

1 1 1, 1 1 1 1,

v v v

a a

a a v a a v

π β α δ α δ

β β α τ β

β τ δ β τ δ

= − + + −

= − + − + − − −

+ − + − + − − + −

 

Since from (a) we have 
( )2 1,

0
vϑ δ
ϑτ

≤ ,   
( )2 2,

0
vϑ δ
ϑτ

≤ ,  ( ) ( )2 21, 2, 2v vδ δ− ≤ , 

and we obtain  
( )0 1,

0
vϑ δ
ϑτ

≤ . 

Therefore it is seen formally that action b  is optimal at state 2. 
 

Now fix 1
3
5

β = , 2
2
5

β =  so that the expected rewards of deterministic stationary strategies 'u , ''u  

are 

( )
2 2 2 2

0
2 2 2 3 2 3 41, '
5 5 5 5 5 5 5

v δ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

K , 

( )
2 2 2 2

0
2 2 3 2 2 41, '' 2 2 2
5 5 5 5 5 5

v δ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

K , 

and the expected reward of randomized stationary strategy π  is 

( ) ( )
( )

2

0

2 10 5
1,

5 5 3
a a

v
a

δ
− −

=
−

, 

which is maximized at * 5 10
3

a −
= . The expected reward associated with this *a  is  

0 (1, ( *)) 0.830019.v δ α ≈  

Given initial state 1, the randomized stationary strategy *δ  associated with *a  is the best among all 
stationary strategies. 
 
Define the strategy as follows,  

' 0
'' 1t

if t
if t

δ
δ

δ
=⎧

= ⎨ ≥⎩
 

The expected  reward of this strategy is  

( )0
221, 0.88
25

v δ = =  

From the fact mentioned above, it is seen that for 0.88 0.830019ε < −  there does   not exist an ε -
optimal randomized stationary strategy. 
 
We continue now with showing that a theorem similar to Turnpike Planning Horizon Theorem which 
Shapiro [11]shows for the homogeneous discounted MDP holds for this MDP with random horizon. 
Because, there may not necessarily exists a stationary deterministic strategy or stationary randomized 
strategy for MDP with random horizon, an optimal strategy we wish to know may be non – stationary, 
so it’s difficult to get it directly. 
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We introduce the following two notations,  

{ }*
1 :F δ δ= ∈Δ : a set of optimal decisions at the first state for the random M- horizon problem, 

and  

( ) ( ){ }*
1 :F n nδ δ δ= = :a set of optimal decisions at the first state for the n - horizon problem.  

 
Theorem 3.9 (Turnpike Planning Horizon Theorem). There exists some L  such that for any 
n L≥ , ( )F n F⊂ . 
 
Proof.  
 
Assume as the contrary that there does not exist such a number L . Then there exists an integer 1M  

such that the first decision of some optimal strategy for the 1M  horizon problem is not contained in 

F ,and there exists an integer 2M ( )1M>  similarly, so we obtain a sequence of strategies 

( ){ }*
iMδ  such that ( )*

1 iM Fδ ∉  for all i . Since Δ  is compact, there exists a subsequence 

( )( ){ }*
im Mδ  such that its limit is **δ ∈Δ .Thus for sufficient large ( )*

im M , 

( )( )( )** *, ip m Mδ δ ε< , so ( )( )** *
1 1 im Mδ δ= . Therefore **

1 Fδ ∉ . On the other hand, from 

definition ** *δ ∈Δ% , and  from the lemma 3.8 ** *δ ∈Δ . Thus **
1 Fδ ∈ , which  is  a   contradiction. 

From the above theorem we can make a first optimal decision by solving the sufficient large n - 
horizon problem. It should be noted that there exists an optimal rolling strategy. 
 
4.  ALGORITHM FOR FINDING AN OPTIMAL FIRST DECISION 
 
Although the Turnpike Planning Theorem in the above section states the existence of the turnpike 
horizon, the theorem shows no way for finding it. Hence in this section we investigate an algorithm for 
finding an optimal first decision or ε – optimal first decision. If we can find an optimal first decision, 
next we pay attention to the second stage, that is, we consider the second stage as the first stage, and 
then apply the same algorithm to it. By means of continuing this procedure at third, fourth, … stage, we 
can find a sequence of optimal decisions one by one, that is, an optimal rolling strategy. Above 
procedures corresponds to identifying the PFH–optimal strategy gradually, that is, making the 
neighborhood of PFH-optimal strategy small. 
 
Let ˆ nΔ  denotes a set of strategies such that its first decision is not included in ( )F n , that is 

( ){ }1
ˆ : .n F nδ δΔ = ∈Δ ∉  

 
Theorem 4.1. For any ˆ nδ ∈Δ , if δ  satisfies   the   following   condition (*), 

(*) ( ) ( ) { }'

1 1

max , , , , 2 max ,
t

t n

V s n V s n R C bκδ κ

δ δ
∞

∈Δ
= + =

− > ∑∏ ,                             (4.1) 

δ  is not optimal for the problem with infinite support. 
 
Proof.  
 
Let 'δ ∈Δ  be a strategy satisfying a condition (*). 

 Set { }
1 1

max ,
t

n
t n

K R C bκ
κ

∞

= + =

= ∑∏ , then from the condition (*),  

( ) ( )'max , , , , 2 nV s n V s n K
δ

δ δ
∈Δ

− >                                                                           (4.2) 

and  
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( ) ( )max , , max , .nV s n K V s
δ δ

δ δ
∈Δ ∈Δ

− ≤                                                                       (4.3) 

 
Therefore from (4.2) and (4.3)  
 

( ) ( )max , , ', nV s V s n K
δ

δ δ
∈Δ

− > . 

 
Thus 'δ ∈Δ  is not optimal.             □ 
 
Remark 4.2. If ( )F n  is singleton and a condition of theorem 4.1 holds for any ˆ nδ ∈Δ , 

( )1 F nδ ∈  is an optimal first decision.  
From the above theorem we can find a first decision  which is not optimal and then remove it.  In 
consequence we propose an  algorithm which decreases the number of decisions possible to be optimal 
by iterating the above check. The following algorithm finds either an optimal first decision or an  ε – 
optimal decision. 
 
Algorithm 4.3 
Step 1. Set 1t = . 

Step 2.Let { } 1
1

max , n
t

n t
u R C bκκ

∞

=
= +

= ∑∏ . 

Step 3. a A∀ ∈ , compute ( ) ( )max , , , ,a
t aV s t V s t

δ
ξ δ δ

∈Δ
= − , where, 1 αδ α= . If 2a

t tξ δ>  and 

tF  is singleton, Stop. Its   decision   is   an optimal   first   one. 
Step 4. If  tδ ε≤ , Stop. Its   decision is  an ε-optimal first one. 

Step 5. 1t t= + , and go to Step 2. 
 
Remark 4.4. From the theorem 3.6   the above algorithm stops in a finite number of steps. 
 
Remark 4.5. If *Δ  is singleton, the above algorithm can find an optimal first decision in a finite 
number of steps. It is discussed by Bes and Sethi [3] that *Δ  is not  rarely singleton.  
 
As a numerical example, we consider an following inventory problem. An item has a lifetime 
distribution an account of its lifecycle or appearance of a new item. We consider that this distribution 
corresponds to the random horizon previously stated. We denote its distribution by { }tϕ . When the 
project end, all remaining items may be sent back at a salvage cost per unit 
 
Here we assume that one-period demand, tη , follows i.i.d. Poisson distribution. Let ta  denotes the 
amount of order. So the amount of stock satisfies a following relation, 
 

1t t t ts s a η−= + − ,                                                                                                                 (4.4) 
 
where the initial stock, 0s , is even. We assume that tS s S≤ ≤ , that is, an upper bound and a lower 
bound of the stock is given. The cost we consider are following,    
( )t tk a : the order cost in the period t  when ta  items are ordered,  

( )t tc s : the holding cost in the period t  when 0ts ≥ , the backlogging cost in the period t  when 

0ts < ,  

( )t tr x : the income in the period t  when tx  items are sold,   where { }{ }1max min , ,0t t tx sη −= . 
 
Accordingly   the   problem is to maximize the total expected reward: 
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( ) ( ) ( ){ }
0

1

a
s t t t t t t

t
Maximize E r X c Sκ

∞

=

⎡ ⎤
− Α −⎢ ⎥⎣ ⎦

∑ .                                                  (4.5) 

Now we assume that the data are as follows, 

0 5s = , 5S = − , 20S = . The expected value of the demands in one-period is 7 . 

( ) ( )
( )

10 0
0 0t

x x
r x

x
≥⎧⎪= ⎨ <⎪⎩

   ( ) ( )
( )

8 5 0
0 0tk a
α α

α
+ ≥⎧⎪= ⎨ <⎪⎩

   ( ) ( )
( )

2 0
4 0t

s s
c s

s s
≥⎧⎪= ⎨ <⎪⎩

.        (4.6) 

Then   let   the   salvage cost per unit be 7 . 
 

Table 1. Optimal   First   Decisions   and   Turnpike   Planning   Horizons 
CV 
Mean 

0.5 0.6 0.7 0.8 0.9 1.0 

2 - - - 6 6 5 
 - - - 10 9 10 
 - - - (1.25,2.75) (0.886,3.11) (0.589,3.41) 
3 - 8 8 7 6 5 

 - 11 15 12 13 14 
 - (2.51,3.49) (1.81,4.19) (1.34,4.66) (0.929,5.07) (0.551,5.50) 
5 13 9 8 7 6 5 
 16 20 19 21 22 20 
 (3.88,6.12) (3.00,7.00) (2.31,7.69) (1.68,8.32) (1.09,8.91) (0.528,9.47) 
10 15 15 13 9 7 5 
 29 32 33 34 34 34 
 (6.13,13.9) (4.90,15.1) (3.76,16.2) (2.65,17.3) (1.57,18.4) (0.513,19.5) 
15 15 15 15 13 8 5 
 39 42 45 47 47 47 
 (8.58,21.4) (6.88,23.1) (5.24,24.8) (3.64,26.4) (2.07,27.9) (0.509,29.5) 
20 15 15 15 14 9 5 
 49 52 56 62 62 60 
 (11.1,28.9) (8.86,31.1) (6.73,33.3) (4.64,35.4) (2.56,37.4) (0.506,39.5) 
30 15 15 15 15 13 5 
 69 73 77 81 87 85 
 (16.0,44.0) (12.9,47.1) (9.73,50.3) (6.63,53.4) (3.56,56.4) (0.504,59.5) 
50 15 15 15 15 15 5 
 107 113 119 125 132 132 
 (26.0,74.0) (20.8,79.2) (15.7,84.3) (10.6,89.4) (5.56,94.4) (0.503, 99.5) 

(upper)      optimal first decision (middle)    Turnpike Planning Horizon (lower)       (λ1, λ2) 
 
We examine how the probability distribution for the planning horizon cause the change of the first 
optimal decisions. We use the following composite distribution of    Poisson distributions, 
[ ] [ ] [ ]

1 2
0.5 0.5P N t P N t P N tλ λ= = = + = ,                                                          (4.7) 

which enables us to arrange various combinations of values of the mean and coefficient of variation of 
the distribution by changing 1λ  and 2λ . We calculate the optimal decisions for amount of orders at the 
first stage and the Turnpike planning horizons for the cases in which means are 2,3,5,10,15,20,30,50, 
and coefficients of variation are 0.5,0.6,0.7,0.8,0.9,1.0. The results of calculations are shown in Table 
1. 
From Table 1.we can see two tendencies in this inventory problem, one is that quality of order at the 
first stage increases as the mean horizon increases, and the other is that it decreases as the coefficient of 
variation increases. The numerical result shows the interesting behaviour that when the coefficient of 
variation is 1.0, the first optimal decisions are always 5. In this numerical example, when the 
coefficient of variation is 1.0, λ1 becomes very small for each emans, which suggests the probability 
that the project will end soon is fairly large. Thus the first decision for amount of order is expected to 
become small. From theses results the optimal first decisions are considered to depend on the shape of 
the probability distribution for the planning horizon much. 
 
5. CONCLUSIONS 
 
The purpose of this  paper  is to analyze an optimal strategy for the MDP with random horizon, and 
purpose the algorithm to obtain it numerically by Turnpike Planning Horizon approach. For the 
processes there may not exist optimal stationary strategies, so we evaluate rolling strategies, derived by 
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using the result of Turnpike Horizon Theorem. We develop an algorithm obtaining an optimal first 
stage decision, and some numerical experiments. As a result of numerical experiments, we take that the 
optimal first decisions depend on the shape of the probability distribution for the planning horizon. 
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