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ABSTRACT:  
This paper analyses the use of ranked set sampling procedures for obtaining the sub-sample from the set of non-
respondents.  The first visit may serve for ranking accurately the sub-sampled non-respondents.  The usual ranked set 
sample (rss) design and two variations of it : extreme-rss and median-rss are used for developing estimators of the 
population mean.  Their expected variances and biases are obtained.  A Monte Carlo experiment is developed for 
evaluating the behavior of the estimators. The use of rss appears as the best alternative.   
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RESUMEN 
En este trabajo se analiza el uso del muestro por rangos ordenados (ranked set sampling) para obtener la sub-muestra del 
conjunto de los no-respondientes.   
La primera visita puede servir para rankear adecuadamente los sub-muestreados.  El diseño rss usual tiene dos 
variaciones de este : extremal-rss y mediana-rss son usados para desarrollar estimadores de la media de la población .  
Sus varianzas esperadas y sesgos son obtenidos.  Un experimento de Monte Carlo se desarrolla para evaluar el 
comportamiento de los estimadores. El  uso de rss aparece como la mejor alternativa.   

 
1 INTRODUCTION 
 
The usual theory of survey sampling is developed assuming that the finite population U={u1 ,…,uN } is 
composed by individuals that can be perfectly identified . A sample s of size n≤N is selected.  The 
variable of interest Y is measured in each selected unit.  Real life surveys should deal with  problems  that 
invalidate some initial assumptions and affect the properties of the statistical models.  One of them 
appears when some of the units in the sample (responding units)  do not  give a response.  The existence 
of  non-responses do not permit to compute the sample mean 

n

y
y

n

i
i∑

== 1                                                                                                                                           (1.1) 

which estimates the population mean μ because we obtain response only from the units in  
 
.s1={i∈s⏐i gives a response at the first visit} 
 
This fact suggests that the population U is divided into two strata: U1 , where are grouped the units that 
give a response at the first visit, and U2 which contains the rest of the individuals.  This is the so called 
‘response strata’ model and was first proposed by Hansen-Hurvitz (1946), see Cochran (1977).  They 
proposed to select a subsample s2’ of size n’2 among the n2 non-respondents grouped in the sample s2 .   
Then we obtain information on the non-respondent's strata U2 through s2’ .   
 
In this paper we consider the use of different rss schemes for selecting the subsample among the non-
respondents.  Rss was proposed by McIntyre (1952) using practical evidence.  He claimed that rss 
produced more accurate estimators of the sample mean than the usual srswr design. Takahasi-Wakimoto 
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(1968) gave mathematical support to his claims.  Dell-Clutter (1972) established that even if the ranking 
is not perfect the proposed estimator is still unbiased.  The use of rss is the theme a growing number of 
papers.  Patil et.al. (2002) gave a review of the theme as well as a large list of papers. 
 
Generally the first visit allows obtaining information on Y from each non-respondent.  Hence we may use 
it for ranking the units in the subsample s’2 and use a ranked set sampling (rss) method for selecting the 
sample of the units to be revisited.  The performance of rss as a better alternative than simple random 
sample with replacement (srswr), in terms of accuracy, has been obtained under different variants of it, 
see Muttlak (1996) and (1997) and Samawi et.al. (1996) . 
 
We develop  estimators of the population mean under rss desings.  Their errors are obtained.  The 
behavior of them  is compared using data provided by two large studies.  One of them is related with the 
study of forest bio-diversity in mountains.  All the selected units were visited but some of them were 
deficiently evaluated.  Then a second visit to all those sites was made.  The first visit provided sufficient 
information for ranking the biodiversity index of the non-respondents.  The second research was related 
with the estimation of the percent of insects in sugar cane fields.  Though they were visited an imperfect 
count of eggs, larvae and adults was detected.  Then a subsample of them was revisited but an idea of the 
percentages was obtained from the first evaluation.  Then the ranking in both does not involve an 
additional investment. 
 
In Section 2 we present the basic results on the use of srswr for estimating the population mean under 
non-responses.   Section 3 develops the rss counterparts using the classic selection procedure, extreme rss 
and median rss.  Section 4 presents a study of the behavior of the different models. Monte Carlo 
experiments were designed for selecting samples, with each design and evaluating the accuracy of the 
estimator. 
 
2 THE NON- RESPONSE STRATUM APPROACH UNDER SRSWR 
 
Non responses  may be motivated by a refusal of  some units  to give the true value of Y or by other 
causes.  Refusals to respond are present in the majority of the surveys.  Hansen-Hurvitz in 1946 proposed 
to select a sub-sample among the non-respondents, see Cochran (1977).  This feature depends heavily on 
the proposed sub-sampling rule.  Alternative  sampling rules to Hansen-Hurvitz´s rule have been 
proposed see for example Srinath (1971) and Bouza (1981).  It is described as follows: 
 
Step 1: Select a sample s from U using srswr 
Step 2: Evaluate Y among the respondents and determine {yi : i∈s1⊂U1, ⏐s1⏐ =n1}. 
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Step 3: Determine n2’=n2/K, K>1; ⏐s2⏐=n2  with s2=s-s1. 
Step 4. Select a sub-sample s’2 of size n2’ from s2 using srswr. 
Step 5. Evaluate Y among the units in s2’ {yi : i∈s2’ ⊂s2, s2⊂U2}. 

             Compute 
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Step 6. Compute the estimate of μ 
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Note that (2.1) is the mean of a srswr-sample selected from U1, then its expected value is the mean of Y in 
the respondent stratum: μ1. We have that the conditional expectation of (2.2) is:  
 

)4.2(]'[ 22 ysyE =  
 
 (2.4) is the mean of a srswr-sample selected from U2  then 
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)5.2(]'[ 22 μ=syEE  
 
Taking into account that for i=1,2 E(ni)=nNi/N=nWi  the unbiasedness of (2.3) is easily derived, see 
Cocrhan (1977). 
 
The variance of (2.3) is deduced by using the following trick; 
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The first term is the mean of s, then its variance is σ2/n.  For the second term we have that 
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Conditioning to  a fixed n2 we have that the expectation of the third term is 

2
22 )( μ−y  .   Then we have that: 
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and  
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Hence the expected error of (2.3) is given by the well known expression 
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3 THE USE OF THE RSS FOR SUBSAMPLING S2. 

 
Our proposal is to use a rss procedure for sub-sampling s2.  We take a subsample s’2(rss) from s using rss 
procedure.  That is we select n’2 independent samples of size n’2=n2/K using srswr.  The units are ranked 
accordingly with the variable close related with the variable of interest Y.  Let  
be the n’2 independent random samples 
 

 
They are ranked and we obtain 
 

   
Where Y(j:t) is the j-th order statistics (os) of the t-th sample, j=1,…,n’2 and t=1,…,n’2.   
The rss sample is formed by the n’2 os in the diagonal.  That is the measurements of Y are 
 

The estimate of μ2 is made by using the estimator: 
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Note that  E[Y(j:j) ⏐n2]=μ(j) ,  j=1,…,n’2.  At this randomization stage the parameter is the mean of y in s2.  

Hence 

 

The rss counterpart of (2.3) is 
 

 It can be represented by 
 

 
Its conditional variance is 
 

We need to obtain an explicit expression of the second term in the right hand side.  It is: 
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The first term of the equation within brackets is equal to  
 

Where 
 

 
The second term is related to the use of srswr for selecting s2  and it is equal to  
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Hence the counterpart of (2.7) is 
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Substituting n’2=n2/K we have that the two first terms are equal to (2.7). Hence we have that 
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which is smaller than (2.9) because the last term is positive. 
 
Some variations of the basic rss procedure have been proposed.  They have a practical sound basis 
because in some occasions to rank all the units may be subject to large errors. Detecting only some units 
with distinguished ranks may be easier and accurate.  Take for example the identification all the two 
extremes values Y(1:j) and Y(n:j) in the j-th sample.  Samawi et.al. (1996) proposed this rss procedure 
named extreme rss (erss).  This procedure considers the identification of the extremes in the samples .    
 
Considering that n’2 is even we evaluate only some extremes  
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An estimator of μ2 is: 
 
 
 

We have that 
 
 

 
The estimator is biased because 
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Note that it is different from μ2 but, if the distribution is symmetric with respect to μ, its bias 
 
B(erss)=μ2(e) -μ2=[(μ2(1) -μ2)+( μ2(n’2) -μ2)]/2                                                                                     (3.7) 
 
 is equal to zero.  Then the symmetry of the distribution plays a role in the magnitude of the bias. The 
variance of the involved os´s is:  
 

 
Then 
 

Is the conditional variance and we have that 
 
Hence we have established hat for estimating the mean in the population we may use the estimator 
 
 

 
Using  (3.7) we have that its bias is  W2B(erss) 
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μμ −=Δ nn   its expected variance is given by : 

 

The third term, at the right hand side of the equation, is the gain in accuracy due to the use of the rss 
method proposed by Samawi et.al. (1996) with respect to the srswr model.   
A preference for rss when compared with erss is obtained when : 
 

 
Another modification of rss is to use only the median of each rss sample.  That is, we compute only the os 
corresponding to the median of the j-th sub-sample.  As we assumed that n’2  is even we take as  median  
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The estimator of the mean of μ2 when the median rss (mrss) procedure is used is: 
 

 
 

This is also a biased estimator because 

 
When we deal with distributions symmetric with respect to μ we may expect that if will be close to  
μ2(m) .  A good example is the  normal distribution where the median and mean coincides.  In general the 
bias of (3.9) is: 
 

 
The variance of the involved random variable is given by: 
 

 
Hence 
 

 
 

Note that if  B(mrss) is negligable  then Δ2(m) ,which measures the gain in accuracy with respect to srs, is  
also small.  
 
Mimicking the construction of the other estimators of μ we have for mrss 
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median and its expected variance is: 
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Erss is better then mrss when 
 
 
4. A MONTE CARLO COMPARISON OF THE ACCURACY OF THE MODELS. 
 
We used two data base sets .  They were considered as providing the set of values of the interest variable 
Y in the population: Y1,…YN .  Some of the Yj’s are identified as non-respondents. They correspond to 
units for which the first measurement was inaccurate and a second visit was made for obtaining a correct 
evaluation.. Hence, once a sample s was selected we were able to identify s1 and s2.   In our notation each 
rss procedure is identified with : 
 
R=rss, erss, mrss.  
 
The Monte Carlo experiment worked as follows: 
 
Step 1. We select s then the sample mean of Y in s1 is calculated and n’2 is determined.   
Step 2. We select n’2 sub-samples from s2 and they are ranked.  
Step 3. A Bootstrap procedure selects re-samples of size n’2 using srswr from each of the n’2 sub-samples.  
Step 4. For each b+1,..,B the Bootstrap estimate of μ : 
 

.is computed for the m-th sample using (3.2) and (3.8) correspondingly to R. 
   
The cycle is repeated for obtaining M samples.  Then the variance is estimated and the Bootstrap 
confidence interval (CI) is calculated using the B obtained Bootstrap’s samples.  As we know the real 
value of μ we can compute the proportion of times that the CI contains it.  R identifies the rss estimator to 
be used for estimating the non-respondent’s stratum means.  
 
The Bootstrap procedure algorithm used is described as follows.  
 
Bootstrap Procedure 
 
Fix Y={Y1,…, YN}, K, M and B. 
            While m<M do 
              .m=0, h=0, π(R )=0 
         Select a sample {y1,…,yn}from Y using simple random sampling with  replacement. 
              If  yj is a non-respondent then yj∈s2, ⏐s2⏐=n2, ⏐{j∉s2}⏐=n1, n2’= ⎣ ⎦Kn /2  
              .w1=n1/n, w2=n2/n 
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                While b<B do 
                             While h<n’2 do 
                       Select a sample s2h={y1,…,yn2’}from s2 using simple random sampling with replacement. 
                         Rank s2h and determine the ranked sample s2(h) 
                             .h=h+1 
                                Select using srswr  a Bootstrap subsample s2hb from s2h 
                                Compute 
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END 
 
Note that the CI uses 2 as an approximation of the 95% percentile. 
 
We used K=2, 5 and 10, B/n≅ 0.1, 0.2 and 0.5  f=n/N≅0.1, 0.05 and 0.01 and M=100.  Considering the 
proportions ρ(R), the relative evaluation of  a method’s precision is measured by: 
 
ρ( R)=∑M

 m=1⏐μ(R) -μ⏐m/Mμ               
 
where μ(R ) is the estimator of the mean μ made by the corresponding rss estimator. 
 
 
 

Table 4.1 : Percent of Coverage of the Confidence Intervals: 100π(R ) for the variable  
Y=Coefficient of  Infestation in Sugar Cane fields 

  B/n≅0.1  
Subsample .rss erss .mrss 
parameter .f=0.1  f=0.05  f=0.01 .f=0.1  f=0.05  f=0.01 .f=0.1  f=0.05  f=0.01 
K=2 96.8 93.2 92.5 89.4 83.7 84.3 81.5 79.5 77.6 
.K=5 94.2 89.5 91.0 84.4 81.7 81.8 81.2 78.5 73.5 
K=10 94.1 89.6 91.0 84.7 80.8 81.3 81.4 77.7 71.9 
  B/n≅0.2  
K=2 96.9 93.3 92.8 89.3 83.4 85.2 82.2 80.1 77.8 
.K=5 94.4 89.3 91.2 84.0 81.4 81.4 81.7 78.8 73.2 
K=10 94.3 89.2 90.4 84.1 80.3 81.7 81.5 77.9 71.7 
  B/n≅0.5  
K=2 96.8 93.3 92.1 89.1 83.4 84.4 81.7 79.9 77.5 
.K=5 94.2 89.3 91.1 84.0 81.8 81.9 81.2 77.5 73.7 
K=10 94.1 89.2 91.0 84.1 80.9 81.4 81.9 77.3 71.2 
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Table 4.2 : Percent of Coverage of the Confidence Intervals: 100π(R ) for the variable  

Y= Hemoglobin in blood in Adolescents 
  B/n≅0.1  
Subsample .rss erss .mrss 
parameter .f=0.1  f=0.05  f=0.01 .f=0.1  f=0.05  f=0.01 .f=0.1  f=0.05  f=0.01 
K=2 95.5 93.2 90.0 89.4 83.7 84.3 94.3 92.0 89.4 
.K=5 94.7 91.4 93.6 84.4 81.7 81.8 93.6 91.0 87.4 
K=10 94.3 91.1 90.4 84.7 80.8 81.3 92.9 94.5 85.0 
  B/n≅0.2  
K=2 93.4 92.9 92.9 89.3 83.4 85.2 97.5 95.1 92.0 
.K=5 92.4 90.0 90.6 84.0 81.4 81.4 91.1 93.7 91.7 
K=10 92.2 94.3 93.0 84.1 80.3 81.7 92.3 91.4 88.4 
  B/n≅0.5  
K=2 95.4 90.0 90.6 89.1 83.4 84.4 94.8 92.7 92.9 
.K=5 95.3 94.4 93.1 84.0 81.8 81.9 94.3 89.6 91.6 
K=10 94.7 94.0 90.3 84.1 80.9 81.4 95.8 90.5 91.7 
 
Table 4.2 presents the percentage of coverage of μ by the Bootstrap CI’s computed using samples from 
the data providing from Hemoglobin’s analysis.  Again the use of rss is the best option but mrss has a 
good behavior for f=0.1 and f=0.05 as well as when B/n≅0.5.  The increase in this parameter is generally 
associated with better values of π(mrss).  These results may be generated by the fact that the percent in 
hemoglobin is well described by a normal distribution. The behavior of erss again is poor. 
 
Table 4.3 : Values of ρ( R) for the variable Y=Coefficient of  Infestation in Sugar Cane fields 
Subsample .rss erss .mrss 
parameter .f=0.1  f=0.05  f=0.01 .f=0.1  f=0.05  f=0.01 .f=0.1  f=0.05  f=0.01 
K=2 0.43 0.48 0.52 0.99 0.96 0.94 0.42 0.42 0.44 
.K=5 0.51 0.50 0.56 0.99 0.92 0.87 0.43 0.57 0.59 
K=10 0.56 0.53 0.56 0.97 0.92 0.98 0.49 0.56 0.59 
 
A look to table 4.3 suggests that for rss the increment of f and a diminishing in K have a significant 
influence in obtaining small values of ρ(rss).  It seems that the levels of f and K have not a significant 
influence in ρ(rss).  A similar comment may be made on the behavior of Erss.  This procedure is 
considerably more inaccurate than rss. ρ(mrss) is always smaller than ρ(erss) for f=0.1 it performs better 
than rss for K=2. 
 
Table 4.4 : Values of ρ( R) for the variable Y= Hemoglobin in blood in Adolescents 
Subsample .rss erss .mrss 
parameter .f=0.1  f=0.05  f=0.01 .f=0.1  f=0.05  f=0.01 .f=0.1  f=0.05  f=0.01 
K=2 0.27 0.22 0.29 0.67 0.62 0.63 0.21 0.21 0.26 
.K=5 0.37 0.29 0.34 0.80 0.72 0.73 0.21 0.24 0.21 
K=10 0.42 0.31 0.31 0.94 0.84 0.85 0.20 0.22 0.26 
 
The results given in table 4.4 suggest that for rss the increment of K determines  larger value of ρ(rss).  It 
seems that the levels of f  have not a significant influence in ρ(rss).  Erss has a worse behavior compared 
with the other procedures. Its accuracy is seriously affected by the increments in K and f.  Mrss has a 
better behavior than  rss which  is not seriously affected by changes in any of the parameters.  Again the 
possible normality of the involved variable should be having a determinant influence in the behavior of 
the accuracy of mrss. 
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