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EN HONOR DE MIRIAN ANDRÉS GÓMEZ
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Resumen. En este art́ıculo introducimos una equivalencia LU de matrices de

Bézout y de Hankel. La presentación de aplicaciones de esta equivalencia nos

lleva a hacer una revisión del significado y el cálculo de la signatura de las
matrices de Bézout y Hankel asociadas a dos polinomios de coeficientes reales.

Concluimos el art́ıculo discutiendo el caso que aparece cuando sus coeficientes

dependen de parámetros reales.

Abstract. In this paper we introduce a LU equivalence of Bezoutians and

Hankel matrices. The presentation of applications of this equivalence leads us
to make a survey of the meaning and computation of the signature of Bezout

and Hankel matrices associated to two real polynomials. We conclude the

paper discussing the case which arises when their coefficients depend on real
parameters.

1. Introduction

Probably two of the best known matrices associated to two polynomials over a
field are the Bezout matrix and the Hankel matrix.

Concerning the Bezout Matrix, although the resultant of two univariate polyno-
mials is defined as the determinant of their Sylvester matrix, the original definition
was given by the determinant of Bezout matrix, introduced by Bézout in 1748. As
for the Hankel matrix, Kronecker already investigated this matrix obtaining the
first occurrence of Subresultant polynomials (see [17]).

More precisely, let F be a field and u(x), v(x) ∈ F[x]. We will denote the degree
of a polynomial by the greek letter δ. Assume that n = δ(u(x)) > δ(v(x)). Then,
Bezout and Hankel Matrices associated to u(x) and v(x), which will be denoted
respectively by Bez(u, v) and H(u, v), are symmetric matrices of order n with a
lot of properties in common.

For example, they are highly related to the greatest common divisor of u(x)
and v(x). It is well known that

rank(Bez(u, v)) = rank(H(u, v)) = n− δ(gcd(u, v)),
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and their minors provide all the coefficients of Subresultant polynomials. More-
over, both matrices represent the same linear map with respect to different bases
(for more details, see [4]).

This paper introduces some applications of the block LU factorization of Bez(u, v)
and H(u, v) introduced in [2], as the real root counting problem.

In some sense, this paper links several results which have independently ap-
peared in [1], [2], [4], [10], [14] and [15].

We organize the paper as follows. In Section 2 we introduce a block LU factor-
ization of Bezout and Hankel matrices associated to two polynomials. In Section
3, we recall the definitions of inertia and signature of a matrix and describe some
applications of Bezout and Hankel matrices related to their signatures. We con-
clude in Section 4 with the relation between signed subresultants and bezoutians
together with the discussion of the parametric case.

2. Block LU factorization of Bez(u, v) and H(u, v)

First of all, recall the definitions of Bezout and Hankel matrices associated to
u(x) and v(x).

2.1. Definitions. LetR(x) be the power series expansion of the function v(x)/u(x)
at the infinity

R(x) =
v(x)
u(x)

=
∞∑

i=1

hix
−i.

This power series defines the n × n Hankel matrix, H(u, v), whose (i, j) entry is
hi+j−1 ( i, j ∈ {1, . . . , n})

H(u, v) =


h1 h2 · · · hn

h2 h3 · · · hn+1

...
...

...
hn hn+1 · · · h2n−1

 .

The Bezout Matrix (or Bezoutian) associated to u(x) and v(x) is the symmetric
matrix

Bez(u, v) =

 c0,0 . . . c0,n−1

...
...

cn−1,0 . . . cn−1,n−1

 ,

where the ci,j are defined by the Cayley expression:

u(x)v(y)− u(y)v(x)
x− y

=
n−1∑
i,j=0

ci,jx
iyj .
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For example, if u(x) = unx
n + un−1x

n−1 + . . . + u0, then the matrix Bez(u, 1) is
the following upper Hankel triangular matrix

Bez(u, 1) =

 u1 . . . un

... . . .

un

 .

2.2. Block LU Factorization. In [11] (1983) and [12] (1984), it is stated that
any Hankel matrix h admits a block LU factorization. More concretely,

There is an upper unitriangular matrix A such that

(1) AthA = D

where D is a block diagonal matrix and each block is a lower
Hankel triangular matrix. We will say that D and h are LU-
equivalent.

We extend the definition of LU-equivalent saying that a block diagonal matrix
D and a matrix B are LU–equivalent when there exists an upper triangular matrix
A such that AtBA = D.

In [1], we present a new algorithm for the block factorization of Hankel matrices
different from the classical one. In [2], we apply such an algorithm to the matrices
Bez(u, v) and H(u, v), coming to the following conclusions.

1. Let J denote the backward identity matrix. If u(x) and v(x) are coprime,
then H(u, v) is LU-equivalent to the block diagonal matrix Dh,

(2) Dh = Diag(JBez(q1, 1)J, JBez(q2, 1)J, . . . , JBez(qt, 1)J,H(rt−1, rt)),

and JBez(u, v)J is LU-equivalent to the block diagonal matrix Db,

(3) Db = Diag(JBez(q1, 1) J, JBez(q2, 1)J, . . . , JBez(qt, 1)J, JBez(rt−1, rt)J),

where q1, q2, . . . , and qt are the successive quotients and rt is the last
nonzero remainder which appear in the signed Euclidean Algorithm applied
to the pair (u(x), v(x)).

For signed Euclidean Algorithm we understand the Euclidean algorithm
applied in the following way:

r−1(x) = u(x), r0 = v(x), ri−2(x) = ri−1(x)qi(x)− ri(x).

Observe that in this case, rt ∈ F. Hereafter, we will say the signed quotient
sequence and the signed remainder sequence associated to (u(x), v(x)).

2. If u(x) and v(x) are not coprime, then both matrices are LU-equivalent to
the block diagonal matrix

(4) Diag(J Bez(q1, 1) J, J Bez(q2, 1) J, . . . , J Bez(qt, 1) J,Dz)

where {q1, q2, . . . , qt} is the signed quotient sequence of (u(x), v(x)) and
Dz is the zero matrix of order equal to the degree of the greatest common
divisor of u(x) and v(x).
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Example 2.1.

u(x) = 42x10+197x9+443x8+1507x7+1204x6+1851x5+458x4−4114x3−1049x2+145x,

and

v(x) = 14x9 + 85x7 + 389x6 − 122x5 + 764x4 + 47x8 − 871x3 − 266x2 + 55x.

In this case,

gcd(u, v) = 14x2+5x, q1 = 3x+4, q2 = −x3−5x+1, q3 = x2+4 and q4 = −x2−3x+4.

As expected, both H(u, v) and Bez(u, v) are LU-equivalent to the following block
diagonal matrix defined by Bezoutians associated to each quotient and 1, multiplied
by the backward matrix J (see Equation (4)),

3
0 0 −1
0 −1 0
−1 0 −5

0 1
1 0

0 −1
−1 −3

0 0
0 0


3. Signatures and Inertias

Recall that the inertia of a square matrix A ∈ Cn×n, written In A, is the triple
of integers

(5) InA = {π(A), ν(A), δ(A)}

where π(A), ν(A), δ(A) denote the number of eigenvalues of A, counted with their
algebraic multiplicities, lying in the open right half-plane, in the open left half-
plane, and on the imaginary axis respectively.

If A is hermitian, π(A) (respectively ν(A)) is the number of positive (respec-
tively negative) eigenvalues and the signature of A, written sig A, is defined as

(6) sigA = π(A)− ν(A).

Given u(x) and v(x) in R[x], with gcd(u, v) = 1 and δ(u) ≥ δ(v), the matrices
Bez(u, v) and H(u, v) are congruent because

Bez(u, v) = Bez(u, 1)H(u, v)Bez(u, 1).

Thus, by the Sylvester’s law of inertia, it holds that

In Bez(u, v) = In H(u, v),

and by Eqs. (2) and (3) of Section 2 we have

In H(u, v) = InDh = In Bez(u, v) = InDb
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On the other hand, the inertia of a block diagonal matrix D = Diag(D11, . . . ,DLL)
is equal to In D =

∑L
i=1 In (Dii). Thus, since the blocks Dhii

and Dbii
are equal

to JBez(qi, 1)J except for the last ones, according to the Iohvidov’s rule we have

π(Dhii) = π(Dbii) =


δ(qi)

2
, δ(qi) even;

δ(qi) + sign(lc(qi))
2

, δ(qi) odd.

ν(Dhii
) = ν(Dbii

) =


δ(qi)

2
, δ(qi) even;

δ(qi)− sign(lc(qi))
2

, δ(qi) odd.

As for the last blocks, in accord with the notation used in Eqs. (2) and (3), we
would have L = t+ 1,

DhLL
= H(rt−1, rt) DbLL

= JBez(rt−1, rt)J with rt ∈ R,

and

π(DLL) = ν(DbLL
) =


δ(rt−1)

2
, δ(rt−1) even;

δ(rt−1) + sign(lc(rt−1) rt)
2

, δ(rt−1) odd.

ν(DLL) = ν(DbLL
) =


δ(rt−1)

2
, δ(rt−1) even;

δ(rt−1)− sign(lc(rt−1) rt)
2

, δ(rt−1) odd.

Note that in the Euclidean algorithm, qt+1 = rt−1
rt

. Therefore, the signed quotient
sequence provides the inertia and furthermore

(7) sig Bez(u, v) = sig H(u, v) =
L∑

i=1

 0, δ(qi) even;

sign(lc(qi)), δ(qi) odd.

Our conclusions can be used in order to simplify a lot of proofs of results
concerning the signature of Hankel matrices. For example, in [7], L. Gemignani
proves Identity (7) but not in a direct way from the block LU factorization but
with an elaborated proof. In [14], Theorem 3.4 turns out to be a corollary of
Theorem 3.1. And in [1], we present a simple proof for the Frobenius Theorem
which characterizes the signature of a Hankel matrix by the sign of its nonzero
principal leading minors.

Next we present some interesting applications of Bezout and Hankel matrices
related to their signatures.
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3.1. Cauchy Index and Real Root Counting. Given two real polynomials
u(x) and v(x) and a < b in R ∪ {−∞,∞}, the Cauchy index of the real rational
function v(x)

u(x) on (a, b) is the number of jumps of the function from −∞ to∞ minus

the number of jumps of the function from ∞ to −∞. It is denoted by Ib
a

v(x)
u(x) .

Assume that δ(v(x)) < δ(u(x)) (otherwise, we redefine v(x) as rem(v(x), u(x))
). Denote by V (a) the number of sign changes of the signed remainder sequence
of u(x) and v(x) evaluated at a.

Summarizing several results of classical Theory of Matrices (see [6] and [13])
and of Real Algebraic Geometry (see [3]), we have the following general result.

I∞−∞
v(x)
u(x)

= sig(Bez(u, v)) = sig(H(u, v)) = V (−∞)− V (∞)

As particular cases of Cauchy indexes,

I∞−∞
v(x)u′(x)
u(x)

= ]{α ∈ R|u(α) = 0 ∧ v(α) > 0} − ]{α ∈ R|u(α) = 0 ∧ v(α) < 0},

and so

I∞−∞
u′(x)
u(x)

= sig(Bez(u, u′)) = sig(H(u, u′)) = ]{α ∈ R|u(α) = 0},

ν(Bez(u, u′)) = ] pairs of complex conjugate zeros

3.2. Stability problems. An n × n matrix is said to be a stable matrix if all
eigenvalues have negative real part, that is, its inertia is equal to (0, n, 0). Stable
matrices are of particular interest in the study of differential equations: “The
matrix A is stable if and only if for every solution vector x(t) of ẋ = Ax, we have
x(t)− > 0 as t− >∞ ”.

Moreover, given a polynomial p(x) = anx
n + · · ·+ a0, the inertia In(p) of p(x)

is defined as the triple of nonnegative integers

{π(p), ν(p), δ(p)}

where π(p) (ν(p) and δ(p)) denotes the number of zeros of p(x) counting multi-
plicities with positive (negative and zero) real parts. If π(p) = δ(p) = 0, p(x) is
said to be stable.

Therefore, a matrix A is stable if and only if its characteristic polynomial is
stable. Then, studying if a matrix is stable or not leads us to determine the
distribution of zeros relative to the imaginary axis. This problem is known as the
Routh–Hurwitz problem.

The solution of this problem for real polynomials is highly related to Bezout
and Hankel matrices as follows.

Theorem 3.1 (The Liénard-Chipart Criterion). A real polynomial u(x) = h(x2)+
xg(x2) is stable if and only if the coefficients of h(x) have the same sign as lc(u(x))
and Bez(h, g) is positive definite.
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Theorem 3.2 (The Markov criterion). A real polynomial u(x) = h(x2) + xg(x2)
is stable if and only if the coefficients of h(x) have the same sign as lc(u(x)) and
H(h, g) is positive definite.

For proofs see [6] and [13].

Thus, in view of (7), Bez(h, g) is positive definite if and only if the quotients of
h(x) and g(x) have degree 1 and positive leading coefficients.

4. Signed Subresultants and Bezout Matrices

As it is mentioned in [14], the use of Euclidean Algorithm in order to compute
the signature is not the best choice if we want to control the size of intermedi-
ate computations or if the coefficients of the polynomials depend on parameters.
Another method derives from subresultant polynomials.

In [8] and [9] the authors introduce the Signed Subresultant Polynomials.
Suppose degree(u) = n and degree(v) = m. Following the notation that

appears in [3], if Sresj(u, v) denotes the classical j-th Subresultant polynomial,
then the j-th signed subresultant Polynomial, denoted by SRj(u, v), is equal to
(−1)(n−j)(n−j−1)/2Sresj(u, v), for 0 ≤ j ≤ m. By convention,

SRn(u, v) = sign(lc(u)n−m−1)u(x),

SRn−1(u, v) = sign(lc(u)n−m+1)v(x), SRj = 0,m < j.

The j-th signed principal subresultant, denoted by srj(u, v), is defined as the
coefficient of xj in SRj(u, v), for j < n. By convention srn(u, v) = sign(lc(u)p−q).

Obviously, the signed subresultants have the same properties as the classical
ones. However in [10] the authors introduce a new theorem Structure Theorem
for Subresultants which defines a new algorithm for computing them with better
complexity than the classical one.

Theorem 4.1 (New Structure Theorem).
Let 0 ≤ j < i ≤ n. Suppose that SRi−1(u, v) is non-zero and of degree j.

1. If SRj−1(u, v) is zero, then SRi−1(u, v) = gcd(u, v) and SRl(u, v) = 0,
l ≤ j − 1.

2. If SRj−1(u, v) 6= 0 has degree k then

srj(u, v) lc(SRi−1(u, v)) SRk−1(u, v) =

= −Rem(srk(u, v) lc(SRj−1(u, v)) SRi−1(u, v), SRj−1v).

Moreover if j ≤ m, k < j − 1,SRk(u, v) is proportional to SRj−1(u, v).
a) SRj−2(u, v) = · · · = SRk+1(u, v) = 0

b) srk(u, v) = (−1)(j−k)(j−k−1)/2 (lc(SRj−1(u, v)))j−k

srj(u, v)j−k−1
,

c) lc(SRj−1(u, v)) SRk(u, v) = srk(u, v) SRj−1(u, v)
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4.1. Signed Subresultants and Cauchy Index. Due to the closed relation
between the remainders and Subresultants, it is possible to compute the Cauchy
index by using only the signed principal subresultants.

Let s = sp, . . . , s0 be is a finite list of elements in an ordered field such that
sp 6= 0, sp−1 = . . . = sq+1 = 0 and sq 6= 0. Let s′ = sq, . . . , s0 (if q+1=0, s’ is the
empty list). Then D(s) is inductively defined as follows:

D(s) =


0, if s′ = ∅;
D(s′) + (−1)(p−q)(p−q−1)/2sign(spsq), if p-q odd;
D(s′), if p-q even.

Then, if sr(u, v) is the principal signed subresultant sequence, then

(8) D(sr(u, v)) = I∞−∞
v(x)
u(x)

.

For proof, see [3], Chapter 9.
In [4] we prove that (classic) Subresultants of u(x) and v(x) can be obtained

through minors of Bez(u, v). Hence, if Bj denotes the j × j principal minor
extracted from the last j columns and rows of Bez(u, v) (that is, the j leading
principal minor of JBez(u, v)J), it holds that

lc(u)n−m srj(u, v) = Bn−j , for j < m

As a consequence, we can also compute I∞−∞
v(x)
u(x) using minors of Bezout matrices.

In fact, we obtain a version of the Frobenius Theorem for Bezout matrices.

Corollary 4.1. Let Bez(u, v) be the Bezout matrix associated to u(x) and v(x).
Then

D(B) = I∞−∞
v(x)
u(x)

,

with B equal to

sign(lc(u)n−m), sign(lc(u)n−m+1)lc(v), 0, . . . , 0︸ ︷︷ ︸
n−m−1

, sign(lc(u)n−m)Bn−m, . . .

. . . , sign(lc(u)n−m)Bn

Thus we can use either (7) or (8) in order to obtain I∞−∞
v(x)
u(x) , depending on the

sizes of coefficients.
As far as the complexity of computing the signed subresultants is concerned,

it is described in [14] a fast algorithm for integer input polynomials based on the
exact signed Euclidean division announced in Theorem 4.1.

However, an important case arises when coefficients depend on parameters.
The more coefficients we have, the less efficient is the computation of quotients
and exact remainders.

In [4], we compare four algorithms for computing the sequence of the principal
subresultants. One of them was the algorithm derived from Theorem 4.1. In order
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to compute the leading principal minors of JBez(u, v)J , we propose the use of the
Samuelson-Berkowitz algorithm.

This algorithm computes the characteristic polynomial of a square matrix such
that, in the process, it computes all the characteristic polynomials of leading prin-
cipal submatrices in increasing order. Since leading principal minors are the in-
dependent coefficients of the computed characteristic polynomials, this algorithm
applied to JBez(u, v)J allows us to compute the wanted sequence.

Using this algorithm, there are no divisions and the arithmetic operations per-
formed are products of the entries of the Bezout matrix and of the coefficients of
characteristic polynomials of submatrices.

The number of arithmetic operations used in this computation is higher than in
the computation of Subresultant polynomials, however the cost of the arithmetic
operations is smaller and when the coefficients depend on parameters, the minors
of the Bezout matrix are usually computed faster.

Example 4.1. The analysis of the equilibrium points of a perturbed four dimen-
sional harmonic oscillator in 1-1-1-1 resonance is reduced to study the double real
roots of the following real polynomial

u(x) = 10n2x3−9n(2y2+3nz)x2+
(
4y4 + 12n

(
y2z + h

)
+ n2

(
8n2 + 16y2 + 9z2

))
x

−2
(
2h+ 8n3

)
y2 − 6hnz,

with n, y, z and h in R and n > 0. The double roots determines the critical values
of the energy momentum map. So we are interested in studying the conditions for
the existence and the multiplicity of real roots (for more details, see [5]).

Let us add that this example does not have the purpose to show a polynomial
whose coefficients depend on a large enough number of parameters to make inef-
ficient the use of Theorem 4.1 in order to compute Subresultants, but to study a
problem which appears in a real physique context.

Then, following the above notation with v(x) = u′(x),

B3 = 10n2sr0(u, u′) = 100n6
(
−20480n12 − 22464 z2n10 + . . .+ 23616 y10zn+ 2624 y12

)
B2 = 10n2sr1(u, u′) = −600n6

(
80n4 − 153n2z2 + 160n2y2 + 120hn− 204ny2z − 68 y4

)
B1 = 10n2sr2(u, u′) = 10n2lc(u′) = 300n4

sr3(u, u′) = 1

Since n > 0, let

b3 = −20480n12 − 22464 z2n10 + . . .+ 23616 y10zn+ 2624 y12

b2 = −80n4 + 153n2z2 − 160n2y2 − 120hn+ 204ny2z + 68 y4,

b1 = 1

b0 = 1

Thus, the following table shows the number of different real roots of u in the
various cases corresponding to all the possible signs for b2 and b3.
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b0 + + + + + + + + +
b1 + + + + + + + + +
b2 + − + − 0 0 + − 0
b3 + − − + + − 0 0 0
nb. 3 1 1 −1 1 1 2 0 1

In fact, the sign conditions with
b2 < 0 and b3 > 0,
b2 < 0 and b3 = 0,
b2 = 0 and b3 > 0

have empty realizations.

As far as the multiplicity is concerned:

Existence of triple root
Since degree(u) = 3, our polynomial has a triple root when the degree of the gcd
of u(x) and u′(x) is equal to 2, that is, the rank of Bez(u, u′) = 1 and

rk(Bez(u, u′)) = 1⇔ b3 = b2 = 0, b1 6= 0

Existence of double root
Since degree(u) = 3, our polynomial has a double root when the degree of the gcd
of u(x) and u′(x) is equal to 1, that is, the rank of Bez(u, u′) = 2 and

rk(Bez(u, u′)) = 2⇔ b3 = 0, b2 6= 0
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