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Resumen. En [1] se introdujo un resultado algoŕıtmico para el cálculo de los
tipos topológicos de las curvas de nivel de una superficie algebraica. A partir
de este resultado, aqúı presentamos aplicaciones basadas en las curvas de
nivel a la determinación de ciertas caracteŕısticas topológicas de superficies
(carácter real, compacidad, conexión) y al problema del plotting.

Abstract. In [1], a result to algorithmically compute the topology types
of the level curves of an algebraic surface, is given. From this result, here
we derive applications based on level curves to determine some topological
features of surfaces (reality, compactness, connectivity) and to the problem
of plotting.

1. Introduction

The study of the level curves of an implicit algebraic surface (i.e. the sections
of the surface with real planes parallel to the xy-plane) gives a clue on how the
surface is like. Take for example the well-known case of the Whitney Umbrella,
whose equation is x2−y2z = 0. It is clear that for z > 0 the level curves consist of
two intersecting lines; for z = 0, the level curve reduces to one line; and for z < 0,
the level curves consist of just one real isolated point. From this information one
may derive a good mental picture of the surface: a non-bounded surface, collapsing
onto a line when z = 0, and with a handle attached corresponding to z < 0.

The problem of computing the different topology types arising in the family of
level curves of a given algebraic surface (together with the z-intervals correspond-
ing to each type) has been addressed in [1] and [15]. In our paper, we will see that
by processing such information topological features of the surface, which can be
useful in order to compute a reliable plotting of the surface, can be algorithmically
computed. Some of these results were already announced in [2]; however, here we
give a more detailed and rigorous description, and we present preliminary results
on an additional question, namely the connectedness of the surface.
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More precisely, the first problem that we consider is to algorithmically decide
whether a given implicit algebraic surface is real. That is, we provide an algorithm
to check whether the intersection of the surface with R3 is a two-dimensional set (in
the Euclidean topology) or not. Furthermore, in the negative case, the algorithm
can also be used to analyze whether the real part of the surface is empty (like
for example x2 + y2 + z2 + 1 = 0), consisting of finitely many points (the case of
x2 + y2 + z2 = 0, whose real part is the origin) or corresponding to a space curve
(the case of x2+y2 = 0). This kind of surfaces whose real part is not 2-dimensional
may get error messages when one tries to draw a plotting.

The second application is concerned with the compactness of the surface. In
this case, since one works with implicit algebraic surfaces, which are therefore
closed over the usual Euclidean topology, the algorithm essentially checks whether
the surface is bounded w.r.t. the variables x, y, z, respectively.

The third application has to do with surface plottings. In order to draw a
plotting of a surface, the user has to introduce as an input a “box” I = [a1, a2]×
[b1, b2] × [c1, c2] ⊂ R3; so, the output shows the part of the surface lying inside
the box. Now, if the user is interested in computing a plotting where the main
topological features of the surface are shown (i.e. which makes clear how the
surface is like), some previous information must be known in order to properly
choose I. Using the information on the topology of the level curves of the surface
w.r.t. the variables x, y, z, we provide an algorithm to compute a “good” box I.

Finally, as a fourth application we provide some results on the connectedness of
the surface that can be derived form the topology of the level curves, and we sketch
a symbolic-numeric algorithm, based on level curves, to compute the number of
connected components of an algebraic surface. Some numerical aspects of this
algorithm are still under study, and hence part of this section can be considered
as a preliminary version of our results on this matter.

The structure of the paper is the following. The second section contains some
preliminary notions and related results on level curves. The third section is devoted
to the problem of checking whether a given implicit algebraic surface is real, or
not. The fourth section analyzes compactness. The problem of computing a
suitable box for plotting a surface (so that the output shows the more relevant
topological features of the surface) is addressed in the fifth section. The last section
is concerned with connectedness.

I would like to acknowledge the help of Professor J. Rafael Sendra in this work,
his fruitful comments and observations, and his support.

2. Preliminaries on Level Curves

In this section we provide some preliminary notions and results concerning
level curves, that are taken from [1]. Thus, we refer the interested reader to [1] for
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further information. Moreover, here we also fix the notation to be used along the
paper, together with some hypotheses to be requested on the surface S.

In the sequel, we consider an algebraic surface S defined by an square-free poly-
nomial F ∈ R[x, y, z] having no univariate factor only depending on the variable
z; so, S has no component which is a plane parallel to the xy-plane. Moreover, we
also assume that the leading coefficient of F with respect to the variable y does
not depend on x. In this situation, the z-level curves (or z-slices, or simply the
level curves) of S are the (plane) curves obtained by intersecting S with planes
normal to the z-axis. Furthermore, given b ∈ R we will denote the level curve
corresponding to the plane z − b = 0 as Sb. One might similarly define the level
curves corresponding to the x-axis and the y-axis, respectively. Thus, when neces-
sary we will speak of ξ-level curves, where ξ ∈ {x, y, z}. Notice that the topology
type of a ξ-level curve can be described by means of a graph homeomorphic to it;
the computation of such a graph is a well-studied problem (see for example [6], [8],
[10] and many others). Furthermore, observe that the requirement on lcoeffy(F )
(namely, that it does not depend on x) can always be fulfilled by applying if nec-
essary a rotation around the z-axis, which does not modify the topology of the
level curves of S.

From Hardt’s Semi-Algebraic Triviality Theorem (see [4]) it can be derived that
the number of topology types of the level curves of S is always finite. In case that
S is compact and non-singular the problem of determining these topology types
can be solved by using Morse Theory (see [4], [14]). In the more general case of
singular surfaces, two approaches can be considered. The first one comes from
Differential Topology and uses elements of Whitney Stratification Theory (see
[9]). This approach has been used in [15]. The second one comes from Computer
Algebra and uses as an essential tool the notion of delineability (see [12]). This
second approach has been developed in [1]. So, in the rest of the section we briefly
recall some notions and results of[1].

Definition 1. We say that a ∈ R is a Critical Level Value if the topology of the
level curves of S changes at z = a, i.e. ∀ ε > 0 there exists aε ∈ (a − ε, a + ε)
such that the level curves corresponding to a and aε, have different topology types.
Moreover, we say that A ⊂ R is a Critical Level Set of S, if A is finite and it
contains all the critical level values of S.

Since the number of topology types of the level curves of S is always finite, the
number of critical level values is also finite and therefore a critical level set always
exists. Moreover, once that a critical level set A has been computed, the topology
types of the level curves can be obtained. Indeed, writing A = {α1, . . . , αr}, we
can decompose the z-axis as

(−∞, α1) ∪ {α1} ∪ (α1, α2) ∪ · · · ∪ (αr−1, αr) ∪ {αr} ∪ (αr,∞).

Thus, taking a z-value for each open interval, and applying the existing algorithms
for computing the topology type of a plane algebraic curve, one determines the
topology type of all the z-level curves with z in some interval. The remaining
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finitely many level curves, corresponding to the F (x, y, αi)’s, where i = 1, . . . , r,
are also analyzed with the same strategy.

Therefore, the problem of determining the topology types of the level curves of
S reduces to the computation of a critical level set. Now we consider the following
notation: Dw(G) denotes the discriminant of a polynomial G w.r.t. the variable
w, i.e. Dw(G) = Resw(G, ∂G

∂w ),
√

G denotes the square-free part of a polynomial
G, and:

M(x, z) :=
{

0 if degy(F ) = 0√
Dy(F ) otherwise

R(z) :=
{

0 if degx(M) = 0
Dx(M(x, z)) otherwise

Then, the following result holds (see [1]):

Theorem 2. Let S satisfy the above hypotheses. Then, it holds that:
(1) If R(z) is not identically zero, then the set of real roots of R(z) is a critical

level set.
(2) If R(z) and M are identically zero, then the set of real roots of Dx(F ) is a

critical level set.
(3) If R(z) is identically zero but M is not identically 0, then the set of real

roots of M(z) is a critical level set.

Remark 1. If R(z) is a non-zero constant, then there is just one topology type
for all the level curves. Similarly for the case when M(z) is a non-zero constant.

3. First Application: Reality of Algebraic Surfaces

We say that an algebraic plane curve is real, if it has infinitely many real points;
so, the real part of a non-real plane curve is either empty or consisting of finitely
many real points. Also, one can check whether a given algebraic curve is real by
means of well-known algorithms (see [16]). For surfaces, we say that an algebraic
surface S is real, if S ∩ R3 has dimension 2 over the usual Euclidean topology;
hence, if S is not real then its real part is at most contained in a space algebraic
curve, and may be even empty or consisting of finitely many points. Now the
problem of checking whether S is real can be solved by using C.A.D. techniques.
Nevertheless, here we will see that it can also be derived from the information
on the level curves. Essentially, we will prove that the question can be reduced
to a problem in R2, i.e. to checking wether certain plane algebraic curves are
real or not. Now the following theorem, which can be found in [11] (see Theorem
XI.3.6 there), is essential for our purposes. Here, we consider the usual definition
of regular point of a surface F (x, y, z) = 0, i.e. a point P of the surface is regular
if some first partial derivative of F P does not vanish at P .

Theorem 3. S is a real surface if and only if it has at least one real regular point.

From this theorem, one may derive another result, concerning the level curves
of S, which can be used to algorithmically check whether S is real. In order to see
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this, we need the following previous result. We denote the partial derivatives of F
w.r.t. the variables x, y, z, respectively, as Fx, Fy, Fz.

Proposition 4. Let F ∈ R[x, y, z], with degy(F ) > 0, be the defining polynomial
of the surface S, and let A be the critical level set of S computed by means of
Theorem 2. If a ∈ R satisfies some of the following conditions:

(i) a is a root of the leading coefficient of F w.r.t. y,
(ii) a is a root of the leading coefficient of M(x, z) w.r.t. x,
(iii) the polynomial F (x, y, a) has multiple factors,

then a ∈ A.

Proof. In order to prove the result, we distinguish the cases when the polynomial
R, defined in Section 2, is identically 0, or not. Let us see first the case when
R 6= 0. Here, we observe that if a is a root of the leading coefficient of F w.r.t.
y, by using the Sylvester form of the resultant Resy(F, Fy) one has that z − a is
a factor of Dy(F ) = Resy(F, Fy), and therefore of M . Thus, it is also a factor
of the leading coefficient of M w.r.t. x, and consequently, condition (i) implies
condition (ii). Now let us see that condition (ii) implies that a ∈ A. Indeed, since
R(z) = Dx(M) = Resx(M, Mx), again from the Sylvester form of the resultant
one deduces that any factor of the leading coefficient of M w.r.t. x is also a factor
of R(z). Thus, R(a) = 0 and a ∈ A. So, it remains to see that if a verifies (iii) but
not (i), then R(a) = 0. Let H(x, z) = Dy(F ); then M(x, z) =

√
H(x, z). Since

a does not verify condition (i), the discriminant of F w.r.t. y behaves properly
under specializations when z = a, i.e. Dy(Fa) = H(x, a) (see Lemma 4.3.1 in
[17]). However, since Fa has multiple factors, we get that Dy(Fa) = 0, and hence
H(x, a) = 0. Therefore, z−a is a factor of Dy(F ), and consequently condition (ii)
occurs; but in that case we have already seen that a ∈ A. Now let us see the case
when R = 0. Since degy(F ) > 0, by Theorem 2 it holds that M 6= 0 but M ∈ R[z].
Also by Theorem 2, A is the set of real roots of M . Thus, if a satisfies condition
(ii) then obviously a ∈ A. Moreover, if a satisfies condition (i), arguing as above
condition (ii) is also satisfied, and therefore a ∈ A. Finally, if (a) satisfies (iii), we
argue as in the case R 6= 0.

Now, we can prove the following result concerning the level curves of S.

Theorem 5. Let A be a critical set of the surface S determined by applying
Theorem 2. Then, S is real if and only if there exists at least one real level curve
Sa of S, with a ∈ R and a /∈ A.

Proof. If S is real, then by Theorem 3 there exists a regular real point P ∈
S. Thus, the implication (⇒) follows from Implicit Function Theorem. So, let
us consider the implication (⇐). For this purpose, we separately analyze the
cases when F ∈ R[x, z] and when F depends on the variable y, respectively. We
start with the case F ∈ R[x, z]. In this situation, let Cxz be the plane algebraic
curve defined by F in the xz-plane. Thus, S is real iff Cxz is real; so, let us see
this. By hypothesis there exists a ∈ R such that a /∈ A, and satisfying that the
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corresponding level curve Sa is real. Since F does not depend on y, the level curves
of S are lines normal to the xz-plane. Therefore, since Sa is a real curve, one has
that the intersection point of Sa with the xz-plane, which we denote as Pa, is also
real. By Theorem 2, A is the set of real roots of the discriminant Dx(F ). Thus, a
is not a root of Dx(F ). Therefore, Pa is not a singular point of Cxz and, since it
has a real regular point, from the Implicit Function Theorem Cxz is a real curve.
Thus, (⇐) holds for the case when F = F (x, z). Finally, let us see that (⇐) also
holds when F depends on the variable y, i.e. when degy(F ) > 0. In order to
see this, let Sa be a level curve of S, real, and corresponding to the intersection
of S with the real plane z = a, where a /∈ A. Since a /∈ A, by Proposition 4
the polynomial Fa(x, y) = F (x, y, a) is square-free. Thus, since Sa is real and
Fa(x, y) is square-free, we have that Sa has at least one real non-singular point
(xa, ya) ∈ Sa. Then, (xa, ya, a) is a real non-singular point of the surface S and
therefore by Theorem 3 the surface S is real.

This theorem can be used to derive an algorithm for checking the reality of an
algebraic surface. For this purpose, note that the condition in Theorem 5, i.e. the
existence of a real level curve of S corresponding to a non-critical level value, can
be tested by checking the reality of the level curves corresponding to intermediate
z-values in between two consecutive critical level values. More precisely, one has
the following algorithm:

Algorithm: (Reality of an algebraic surface S) Given an algebraic surface S implicitly
defined by a real polynomial F (x, y, z), square-free, with no factor only depending
on the variable z, and such that lcoeffy(F ) does not depend on the variable x, the
algorithm decides whether S is real.

(1) Compute a critical set of S, A = {a1, . . . , ar} by means of Theorem 2. Let
a0 = −∞, ar+1 = ∞.

(2) Check whether there exists i ∈ {0, . . . , r} such that the plane algebraic
curve defined by F (x, y, ξi), where ξi is taken in the interval (ai, ai+1), is
real. If it is, then return ¿ S is realÀ else return ¿ S is not realÀ.

Remark 2. If the surface is not real there are three cases: (i) the real part of
the surface reduces to a space curve; (ii) it consists of finitely many points; (iii)
it is empty. Then, one can algorithmically identify the case by looking at the level
curves. More precisely, in case (iii) all the level curves are empty; in case (ii),
there are just finitely many non-empty level curves, all of them corresponding to z-
critical level values, and consisting of finitely many real points. Finally, case (i) is
identified when (ii) and (iii) do not happen, and all the level curves corresponding
to non-critical z-values are either empty or consisting in finitely many real points.

Example 1. Let S be the algebraic surface defined by

F (x, y, z) = (x2 − 1)2 + (y2 − 1)2 + (z2 − 1)2 − 3/2.
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which satisfies the required hypotheses. Let us see whether S is real. For this
purpose, by applying Theorem 2 the following z-critical level set of S is computed:

Az = {−1.491557867,−1.306562965,−0.5411961001,
0.5411961001, 1.306562965, 1.491557867}

Then we check whether there exists some level curve, corresponding to a z-value
not in Az, which is real. For z < −1.491557867 we get that the level curves are
empty over R2, but for z = −7/5, which is intermediate between −1.491557867
and −1.306562965, we get the z-slice

{(x2 − 1)2 + (y2 − 1)2 − 723/1250 = 0, z = −7/5}
which is real. Therefore, we conclude that S is real (see Figure 1).

Example 2. Consider the surface S defined by

F (x, y, z) = x4 + 2x2y2 − 2x2 + y4 − 2y2 + 1 + z2.

In this case, a z-critical set of S is Az = {0}, i.e. the z-slices of S have at most
three different topology types. However, the z-slices for z = −1 and z = 1 are
empty curves over R; so, from Theorem 2 we deduce that for z > 0 and z < 0
the surface is empty over the reals. Therefore, S is not real. In fact, the only real
points of the surface are the points of the z-slice corresponding to z = 0, which is
the circle

{(x2 + y2 − 1)2 = 0, z = 0}
4. Second application: Compactness

Here we show how to use level curves to algorithmically decide whether S is
compact. Now since S is implicitly defined by a polynomial F ∈ R[x, y, z], then
it is obviously closed. Thus, in order to check whether it is compact it suffices to
check whether it is bounded, which amounts to deciding whether it is bounded
w.r.t. the x, y and z variables, respectively.

Let us see how to check whether S is bounded w.r.t. the variable z. For this
purpose, let A = {a1, . . . , ar} be a critical level set of S, where a1 < · · · < ar.
Then, S is bounded w.r.t. the variable z iff for z > ar and z < a1 the level curves
of S are empty over R2. Moreover, since by Theorem 2 the topology type of the
level curves of S stays invariant for z > ar and for z < a1, in order to check
whether the condition holds it suffices to take z0 < a1 and zr+1 > ar, and then
to analyze whether the level curves Sz0 , Szr+1 are empty or not over R2. For this
purpose one may adapt the strategy for deciding whether a given algebraic curve
is real.

Similarly for the x and y variables. However, observe that in order to compute
ξ-critical sets, with ξ ∈ {x, y, z}, by means of Theorem 2, one needs that the
hypotheses of Theorem 2 hold not only for the variable z, but also for x, y. To
ensure this, one may always apply if necessary a linear transformation so that the
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polynomial F ∈ R[x, y, z] defining S has no univariate factors, and lcoeffx(F ),
lcoeffy(F ) and lcoeffz(F ) are all constant. Observe that such a transformation
preserves the topological properties of the surface.

Thus, one may derive the following algorithm:

Algorithm: (Compactness of an algebraic surface S) Given an algebraic surface S
implicitly defined by a real polynomial F (x, y, z), square-free, with no univariate
factor, and such that lcoeffx(F ), lcoeffy(F ), lcoeffz(F ) are constant, the algorithm
decides whether S is compact.

(1) Compute an upper bound kz of the absolute value of the elements of a
critical set of S.

(2) Check if the plane algebraic curves defined by F (x, y,−kz−1) and F (x, y, kz+
1) are both empty over R2. If this does not happen, then return ¿ S is
not compactÀ.

(3) Proceed in an analogous way for the variables x and y. If all the tested
plane curves are empty over R2, return ¿ S is compactÀ, else return
¿ S is not compactÀ.

Remark 3. In this case one does not need to compute the real roots of the polyno-
mial provided by Theorem 2, but just upper and lower bounds on them. This can
be done by applying existing algorithms (see for example [13]).

Example 3. Let S be the surface in Example 1, which fulfills all the requirements
of the algorithm before, and let us see whether it is compact. Because of the sym-
metry of the surface, we just need to examine the z-level curves. More precisely,
we just have to check whether the z-slices below the least z-critical level value and
above the greatest z-critical level value are both empty over R2. In this sense, for
z = −2 and z = 2 one gets

{(x2 − 1)2 + (y2 − 1)2 + 15/2 = 0, z = −2}
{(x2 − 1)2 + (y2 − 1)2 + 15/2 = 0, z = 2}

which are obviously empty over R2. Therefore, we deduce that S is bounded, and
therefore it is compact (see Figure 1).

An alternative to this approach would be the following: whenever S has no
asymptotic plane of the type z − z0 = 0, S is bounded iff: (i) the level curves
of S above (resp. below) the highest (resp. the lowest) z-critical level values are
empty over the reals; (ii) all the the z-slices of S are bounded curves. Therefore,
in this case just the level curves w.r.t. z need to be considered. One may check
that if z − z0 = 0 is an asymptotic plane of S, then the homogenization F̂ of F ,
particularized at z = z0, must contain the line of infinity; hence, z0 must be a real
root of lcoeffy(F ). So, whenever lcoeffy(F ) is constant (which can be achieved by
applying if necessary an affine transformation), S has no asymptotic plane of the
considered type. The disadvantage of this alternative approach is that it requires
to describe the topology of several plane curves, while in the algorithm that we



APPLICATIONS OF LEVEL CURVES TO PROBLEMS ON ALGEBRAIC SURFACES 113

provided before one just needs to check whether some curves are empty over the
reals, or not.

5. Third application: Plotting Boxes

Here we address the problem of computing an interval I = [−a, a] × [−b, b] ×
[−c, c] ⊂ R3, so that the plotting of S in I shows the main relevant topologi-
cal features of S. For this purpose, the information on the ξ-level curves of S,
ξ ∈ {x, y, z}, is used. More precisely, we consider the following definition, which
provides a criterion to compute I.

Definition 6. We say that the interval [−mx, mx]× [−my,my]× [−mz,mz] ⊂ R3

is suitable for plotting S if, for ξ ∈ {x, y, z}, −mξ,mξ are not ξ-critical level values
of S and [−mξ,mξ] contains all the ξ-critical level values of S.

Thus, if I is “suitable for plotting” S, one can be sure that out of I there is no
change in the topology type of the ξ-level curves of S. Note that the computation
of a suitable I requires to compute critical level sets for the variables x, y, z, re-
spectively, so one requests the same hypotheses as in Section 4. Observe also that
Remark 3 also holds for this case. Thus, the following algorithm is derived:

Algorithm: (Suitable interval for plotting an algebraic surface S) Given an algebraic
surface S implicitly defined by a real polynomial F (x, y, z), square-free, with no
univariate factor, and such that lcoeffx(F ), lcoeffy(F ), lcoeffz(F ) are constant,
the algorithm determines a suitable interval I ⊂ R3 for plotting S.

(1) For ξ ∈ {x, y, z} compute an upper bound kξ of the absolute values of the
elements of a ξ-critical set.

(2) Return the interval I = [−kx, kx]× [−ky, ky]× [−kz, kz].

Example 4. Consider again the surface in Example 1. Here, we have that

Az = {−1.491557867,−1.306562965,−0.5411961001,
0.5411961001, 1.306562965, 1.491557867}

is a z-critical level set of S. Furthermore, by symmetry,

Az = Ax = Ay

Thus, the interval

I = [−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5]

is suitable for plotting S. The picture of the part of S lying in I is shown in Figure
1.

6. Fourth application: Connectedness

In case that R(z) has no real roots, S is homeomorphic to Sa × R (where a is
any real value), and hence it is connected iff Sa is. Since one can algorithmically
decide whether a plane algebraic curve is connected or not (for example, from the
graph associated with the curve), this case is easy to address. So, in the sequel
we assume that R(z) has real roots. Then the information on the topology types
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Figure 1. F (x, y, z) = (x2 − 1)2 + (y2 − 1)2 + (z2 − 1)2 − 3/2.

of the level curves of S provides the following sufficient condition for S to be
connected.

Theorem 7. Assume that S has no asymptotic plane of the type z−z0 = 0, z0 ∈ R,
and let zmin, zmax be the least and the greatest real roots of R(z), respectively.
Moreover, assume that S fulfills the following two conditions: (i) the level curves
corresponding to non-critical z-values in between zmin, zmax are real; (ii) every
level curve corresponding to a critical z-value strictly lying in between zmin, zmax

is connected. Then, S is connected.

Proof. Since S has no asymptotic plane normal to the z-axis, from the given
conditions one may see that S is path-connected. Hence, it is connected.

Notice that the condition is not necessary (think for example on a surface having
several local maxima and minima with respect to z, placed at different heights).
Moreover, we have already observed that asymptotic planes normal to the z-axis
come from real roots of lcoeffy(F ); hence, whenever lcoeffy(F ) is constant (which
can be achieved by almost all affine transformations) the surface has no asymptotic
planes of the considered type.

Example 5. Consider the algebraic surface S defined by F (x, y, z) = x2 + y2 +
z2 + 2xyz − 1. Notice that lcoeffy(F ) is constant. A z-critical level set of S is
Az = {−1, 1}. Because of the symmetry of the surface, we have that Ax = Ay =
Az; so, [−2, 2]× [−2, 2]× [−2, 2] is suitable for plotting S. A plotting of S in this
interval can be seen in Figure 2; this figure was computed with maple.

Observe that from Figure 2 it is not completely clear whether the surface is
connected or not. However, by using the above result we check that S is connected.
Indeed, Figure 3 shows the different topology types corresponding to the z-level
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Figure 2. The cubic x2 + y2 + z2 + 2xyz − 1 = 0, and its level curves.

curves for the cases z < −1, z = −1,−1 < z < 1, z = 1, z > 1, respectively. Here
one may check that all the hypotheses of Theorem 7 hold.

Figure 3. Level curves of the cubic x2 + y2 + z2 + 2xyz − 1 = 0.

Also, one has the following sufficient condition, derivable from the topological
information on the level curves, for S to be connected. The proof of this statement
is straightforward.
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Theorem 8. If there exists a non-critical level value za ∈ R so that the cor-
responding level curve is empty over the reals, and there also exist z1, z2 ∈ R,
z1 < za < z2 so that the level curves corresponding to z = z1, z = z2 are not
empty over the reals, then S is not connected.

However, except in the case when the hypotheses of Theorem 7 are satisfied,
the topology of the level curves does not provide enough information to derive the
number of connected components of S. In order to this, we need to know how to
join the level curves. So, in the sequel we propose a symbolic-numeric algorithm
based on level curves to solve this question. We want to remark that numerical
aspects and improvements for an efficient implementation of the method are still
under study.

Essentially, the idea is to determine how the connected components of a level
curve corresponding to a non-critical z-value join to the connected components of
the level curves corresponding to the critical level values immediately below and
above, respectively; for this purpose, we take a point on each connected component
of the non-critical z-value, and we generate a space curve (as the solution of a
system of differential equations) which connects it with some connected component
of the critical z-level curve immediately below/above (see Figure 2). Thus, once
we know how to join the connected components of the level curves corresponding
to non-critical and critical z-values, the number of connected components of S can
be obtained as the number of “connected chains” (whose elements are connected
components of level curves) computed in the process. In Figure 4 we suggest the
idea for a surface consisting of the union of two spheres, and an isolated real point;
in this case, the output of the algorithm would yield three connected chains (two
of them corresponding to the spheres, and one to the isolated point), and therefore
we would conclude that the surface has three connected components.

Figure 4. Connected chains.

In order to solve this problem, we require some more conditions on the surface
S to be analyzed. More precisely, the following hypotheses must be satisfied:
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(i) S is defined by an square-free polynomial F , with no factor just depending
on the variables y, z. If this holds, then gcd(F, Fx) = 1, and the variety C
defined by F = Fx = 0 is a space algebraic curve; recall that Fx denotes
the partial derivative of F w.r.t. x.

(ii) There does not exist any plane z − a = 0 containing infinitely many points
of the curve C = V (F, Fx), i.e. not containing infinitely many points of S
where Fx vanishes.

(iii) S is not asymptotic to any plane of equation z− b = 0, where b is a critical
level value.

Condition (i) can be trivially checked by factorizing F . To check condition
(ii), one computes Resy(F, Fx), and checks whether the resultant has some factor
only depending on the variable z; if this does not happen, then the condition
holds (notice that the zero-set of this resultant contains the projection of C onto
the xz-plane). Finally, condition (iii) can be checked by embedding S in the
projective space, and analyzing the form of higher degree of the equation defining
the projective closure of S. Furthermore, in case that S does not fulfill some of
these conditions, almost all linear transformations lead to a new surface (with the
same topological features than the original surface) where the three requirements
hold.

Now in the sequel let A = {a1, . . . , ar}, where a1 < · · · < ar, be a z-critical level
set of S; furthermore, we set a0 = −∞, ar+1 = +∞. Moreover, let b0 < · · · < br

verify ai < bi < ai+1 for all i ∈ {0, . . . , r}. With this notation, our problem
is to decide, for each ai, bi, ai+1, how to join the connected components of the
level curves Sbi , Sai , and Sbi , Sai+1 , respectively. Observe that, since S satisfies
condition (iii), every connected component of a level curve of S corresponding
to a non-critical z-value, joins to some connected component of the level curve
corresponding to the z-critical level value immediately below (resp. above). In
fact, this is the reason why we request condition (iii).

For this purpose, the strategy is to use a symbolic-numeric algorithm which
essentially works as follows:

Algorithm: (Connected components of an algebraic surface S) Given an algebraic
surface S implicitly defined by a real polynomial F (x, y, z) satisfying the conditions
(i), (ii), (iii), the algorithm determines the number of connected components of S
and a description of them in terms of level curves.

(0) Compute the topology graph of Sbi (if Sbi ∩ R3 = ∅ take another i), and
the singular points of Sai ; the information on the singular points of Sai will
be used at step (2), in some cases (see Remark 4), and also at step (3)).

(1) Take a real point P in each connected component of Sbi . Notice that this
information is derived from the computation of the topology graph of Sbi .

(2) Use a path continuation method to connect P with some point Q in Sai ,
to be computed by the algorithm; in order to do this, we travel from P to
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Q by following a space curve, contained in the surface, which is computed
as the solution of a system of differential equations.

(3) Identify the connected component of Sai where the final point Q belongs
to. For this purpose, we compute the topology graph of Sai

by introducing
the point Q as a vertex of the graph.

(4) Join by an edge the starting connected component of Sbi and the connected
component of Sai

that has been reached.
(5) Proceed in an analogous way to connect P with some point Q? in Sai+1 .
(6) After carrying out the computation for all the connected components of

all the Sbi
’s, several connected chains are obtained, each one consisting of

some connected components of the Sbi ’s and the Sai ’s joined by edges. The
number of connected chains, is the number of connected components of the
surface.

Now let us describe with more detail step (2). We consider the solution to the
following system of differential equations:





x′ = −Fy +
Fz

Fx
y′ = Fx

z′ = −1
x(0) = xi; y(0) = yi; z(0) = bi

where P := (xi, yi, bi) ∈ Sbi . The solution of this differential equation provides
a space curve contained in S; moreover, since z′(t) = −1 and S fulfills condition
(iii), this space curve reaches z = ai. Also, since one may decompose the part of S
with z ∈ (ai, bi) into non-intersecting pieces, each one corresponding to a different
connected component of Sbi (see [1]), the choice of the initial point for a particular
connected component of Sbi does not affect the connected component reached in
the end. In other words, the connected component reached at z = ai is always the
same for all the points of a same connected component of Sbi (see Figure 5).

In general the differential system above does not have a symbolic solution, and
therefore numerical methods must be applied. In our case, we used the package
of maple for numerically integrating differential equations. Here, one may see
that as the numerical method goes on, the error considerably grows, so that the
point of z = ai finally reached cannot be recognized as belonging to any con-
nected component of Sai . For this purpose, at each step the solution provided
by numerical integration must be corrected. In order to do this, each solution
P̃i,k = (x̃i,k, ỹi,k, z̃i,k) is corrected to P̄i,k = (x̄i,k, ȳi,k, z̃i,k) by computing a point
of the level curve Sz̃i,k

close to the solution (x̃i,k, ỹi,k, z̃i,k) (observe that the z-
coordinate is the same in P̃i,k and in P̄i,k). For this purpose, we take the line
passing through P̃i,k in the direction of ~v = (Fx(P̃i,k), Fy(P̃i,k)), and we compute
the intersection points of this line with Sz̃i,k

. This new point is used to go on
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Starting point

Space curve computed by the algorithm

Final point

Non-critical z-value

Critical Value

Figure 5. Idea of the connectedness algorithm.

with the numerical integration process. In this sense, the following remark must
be taken into account.

Remark 4. If K is a singular point of Sai (notice that these points are computed
in the initial step of the algorithm), then we assume that it is reached whenever
the distance between P̄i,k and K is smaller than a sufficiently small ε previously
fixed. Thus, in this case the computation stops and we assume that the starting
point of Sbi is connected with K, i.e. that Q = K.

In addition, there are two more situations which must be examined carefully:
If, before reaching the level plane z = ai, the numerical integration process
hits a point where Fx vanishes, then the method fails. This situation can
be prevented by detecting whether |Fx(x̃i,k, ỹi,k, z̃i,k)| < ε; if this happens,
we choose a different point of Sz̃i,k

to go on with the numerical process.
It may happen that S contains a 1-dimensional subset L of singular points,
where L is “isolated” in the following sense: given any point P ∈ L, there
exists a Euclidean neighborhood Ep of P such that every point of S ∩
Ep ∩ R3 is also a point of L. For example, the handle of the Whitney
Umbrella x2 − y2z = 0, which is obtained for negative values of z, provides
an example of this situation. Unless L is parallel to the xy-plane (in which
case no problem arises), this phenomenon can be detected by identifying
the presence of isolated points in non-critical level curves. In that situation,
the points of L are singular points of S; so, Fx vanishes at B and therefore
the system of differential equations before cannot be used to compute the
point A in Sai which must be connected with B. However, in that case
L carries the information that we wanted to extract from the system of
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differential equation, and hence what we must do in this case is to take
that information from the topology of the space curve defined by L (see [3],
[5], [7]).

Finally, in order to connect z = bi and z = ai+1, we apply an analogous process
to the differential equation system:





x′ = −Fy − Fz

Fx
y′ = Fx

z′ = 1
x(0) = xi; y(0) = yi; z(0) = bi

Here, the third equation is different from the system before (z′ = 1 instead of
z′ = −1) since in this case one has to move “up” from z = bi to z = ai+1. One
may see that also the first equation has changed. However, the space curve that
one obtains by integrating these equations lies also in the surface S.
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