EXISTENCE RESULTS FOR A SUPERLINEAR SINGULAR EQUATION OF CAFFARELLI-KOHN-NIRENBERG TYPE

```
BENJIN XUAN (*)
```


Abstract

In this paper, using the Mountain Pass Lemma and the Linking Argument, we prove the existence of nontrivial weak solutions for the Dirichlet problem for the superlinear equation of Caffarelli-KohnNirenberg type in the case where the parameter $\lambda \in\left(0, \lambda_{2}\right), \lambda_{2}$ being the second positive eigenvalue of the quasilinear elliptic equation of Caffarelli-Kohn-Nirenberg type.

Key Words: singular equation, Caffarelli-Kohn-Nirenberg inequality, Mountain Pass Lemma, Linking Argument. 2000 Mathematics Subject Classification: 35J60.

1. Introduction

In this paper, we investigate the existence of weak solutions for the following Dirichlet problem for the superlinear singular equation of Caffarelli-KohnNirenberg type:
(1.1)

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|x|^{-a p}|D u|^{p-2} D u\right)=\lambda|x|^{-(a+1) p+c}|u|^{p-2} u+|x|^{-b q} f(u), \text { in } \Omega \\
u=0, \text { on } \partial \Omega
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{n}$ is an open bounded domain with C^{1} boundary and $0 \in \Omega, 1<$ $p<n, 0 \leq a<\frac{n-p}{p}, a \leq b \leq a+1, q<p^{*}(a, b)=\frac{n p}{n-d p}, d=1+a-b \in[0,1]$, and $c>0$.
(*) Benjin Xuan. Department of Mathematics
University of Science and Technology of China
Universidad Nacional de Colombia
This work is supported by Grants 10071080 and 10101024 from the National Science Foundation of China.
e-mail:wenyuanxbj@yahoo.com.

For $a=0, c=p$, many results of linking-type for critical points have been obtained (e.g. [1, 2, 6] for $p=2,[12]$ for $p \neq 2$ and [14] for the case with indefinite weights).
The starting point of the variational approach to these problems with $a \geq 0$ is the following weighted Sobolev-Hardy inequality due to Caffarelli, Kohn and Nirenberg [4], which is called the Caffarelli-Kohn-Nirenberg inequality. Let $1<p<n$. For all $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, there is a constant $C_{a, b}>0$ such that

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}|x|^{-b q}|u|^{q} d x\right)^{p / q} \leq C_{a, b} \int_{\mathbb{R}^{n}}|x|^{-a p}|D u|^{p} d x \tag{1.2}
\end{equation*}
$$

where
(1.3) $-\infty<a<\frac{n-p}{p}, a \leq b \leq a+1, q=p^{*}(a, b)=\frac{n p}{n-d p}, d=1+a-b$.

Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded domain with C^{1} boundary and $0 \in \Omega, \mathcal{D}_{a}^{1, p}(\Omega)$ be the completion of $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, with respect to the norm $\|\cdot\|$ defined by

$$
\|u\|=\left(\int_{\Omega}|x|^{-a p}|D u|^{p} d x\right)^{1 / p}
$$

From the boundedness of Ω and the standard approximation argument, it is easy to see that (1.2) holds for any $u \in \mathcal{D}_{a}^{1, p}(\Omega)$ in the sense:

$$
\begin{equation*}
\left(\int_{\Omega}|x|^{-\alpha}|u|^{r} d x\right)^{p / r} \leq C \int_{\Omega}|x|^{-a p}|D u|^{p} d x \tag{1.4}
\end{equation*}
$$

for $1 \leq r \leq \frac{n p}{n-p}, \alpha \leq(1+a) r+n\left(1-\frac{r}{p}\right)$, that is, the embedding $\mathcal{D}_{a}^{1, p}(\Omega) \hookrightarrow$ $L^{r}\left(\Omega,|x|^{-\alpha}\right)$ is continuous, where $L^{r}\left(\Omega,|x|^{-\alpha}\right)$ is the weighted L^{r} space with norm:

$$
\|u\|_{r, \alpha}:=\|u\|_{L^{r}\left(\Omega,|x|^{-\alpha}\right)}=\left(\int_{\Omega}|x|^{-\alpha}|u|^{r} d x\right)^{1 / r}
$$

In fact, we have the following compact embedding result which is an extension of the classical Rellich-Kondrachov compactness theorem (cf. [7] for $p=2$ and [16] for the general case). For convenience of the readers, we include the proof here.

Theorem 1 (Compact embedding theorem). Suppose that $\Omega \subset \mathbb{R}^{n}$ is an open bounded domain with C^{1} boundary and $0 \in \Omega, 1<p<n,-\infty<a<\frac{n-p}{p}$. The embedding $\mathcal{D}_{a}^{1, p}(\Omega) \hookrightarrow L^{r}\left(\Omega,|x|^{-\alpha}\right)$ is compact if $1 \leq r<\frac{n p}{n-p}, \alpha<$ $(1+a) r+n\left(1-\frac{r}{p}\right)$.

Proof. The continuity of the embedding is a direct consequence of the Caffarelli-Kohn-Nirenberg inequality (1.2) or (1.4). To prove the compactness, let $\left\{u_{m}\right\}$ be a bounded sequence in $\mathcal{D}_{a}^{1, p}(\Omega)$. For any $\rho>0$, if $B_{\rho}(0) \subset \Omega$ is the ball centered at the origin with radius ρ, it holds that $\left\{u_{m}\right\} \subset W^{1, p}\left(\Omega \backslash B_{\rho}(0)\right)$.

Then the classical Rellich-Kondrachov compactness theorem guarantees the existence of a convergent subsequence of $\left\{u_{m}\right\}$ in $L^{r}\left(\Omega \backslash B_{\rho}(0)\right)$. By taking a diagonal sequence, we can assume without loss of generality that $\left\{u_{m}\right\}$ converges in $L^{r}\left(\Omega \backslash B_{\rho}(0)\right)$ for any $\rho>0$.
On the other hand, for any $1 \leq r<\frac{n p}{n-p}$, there exists a $b \in(a, a+1]$ such that $r<q=p^{*}(a, b)=\frac{n p}{n-d p}, d=1+a-b \in[0,1)$. From the Caffarelli-KohnNirenberg inequality (1.2) or (1.4), $\left\{u_{m}\right\}$ is also bounded in $L^{q}\left(\Omega,|x|^{-b q}\right)$. By the Hölder inequality, for any $\delta>0$, it holds that

$$
\begin{align*}
\int_{|x|<\delta}|x|^{-\alpha}\left|u_{m}-u_{j}\right|^{r} d x \leq & \left(\int_{|x|<\delta}|x|^{-(\alpha-b r) \frac{q}{q-r}} d x\right)^{1-\frac{r}{q}} \\
& \times\left(\int_{\Omega}|x|^{-b r}\left|u_{m}-u_{j}\right|^{r} d x\right)^{r / q} \tag{1.5}\\
\leq & C\left(\int_{0}^{\delta} r^{n-1-(\alpha-b r) \frac{q}{q-r}} d r\right)^{1-\frac{r}{q}} \\
= & C \delta^{n-(\alpha-b r) \frac{q}{q-r}},
\end{align*}
$$

where $C>0$ is a constant independent of m. Since $\alpha<(1+a) r+n\left(1-\frac{r}{p}\right)$, it holds that $n-(\alpha-b r) \frac{q}{q-r}>0$. Therefore, for a given $\varepsilon>0$, we first fix $\delta>0$ such that

$$
\int_{|x|<\delta}|x|^{-\alpha}\left|u_{m}-u_{j}\right|^{r} d x \leq \frac{\varepsilon}{2}, \forall m, j \in \mathbb{N}
$$

then we choose $N \in \mathbb{N}$ such that

$$
\int_{\Omega \backslash B_{\delta}(0)}|x|^{-\alpha}\left|u_{m}-u_{j}\right|^{r} d x \leq C_{\alpha} \int_{\Omega \backslash B_{\delta}(0)}\left|u_{m}-u_{j}\right|^{r} d x \leq \frac{\varepsilon}{2}, \forall m, j \geq N
$$

where $C_{\alpha}=\delta^{-\alpha}$ if $\alpha \geq 0$ and $C_{\alpha}=(\operatorname{diam}(\Omega))^{-\alpha}$ if $\alpha<0$. Thus

$$
\int_{\Omega}|x|^{-\alpha}\left|u_{m}-u_{j}\right|^{r} d x \leq \varepsilon, \forall m, j \geq N
$$

that is, $\left\{u_{m}\right\}$ is a Cauchy sequence in $L^{q}\left(\Omega,|x|^{-b q}\right)$.
Our results will rely mainly on the results of the eigenvalue problem corresponding to problem (1.1) in [15]. Let us first recall the main results of [15]. Consider the nonlinear eigenvalue problem:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|x|^{-a p}|D u|^{p-2} D u\right)=\lambda|x|^{-(a+1) p+c}|u|^{p-2} u, \text { in } \Omega \tag{1.6}\\
u=0, \text { on } \partial \Omega,
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{n}$ is an open bounded domain with C^{1} boundary and $0 \in \Omega$, $1<p<n, 0 \leq a<\frac{n-p}{p}, c>0$.
Let us introduce the following functionals in $\mathcal{D}_{a}^{1, p}(\Omega)$:

$$
\Phi(u):=\int_{\Omega}|x|^{-a p}|D u|^{p} d x, \text { and } J(u):=\int_{\Omega}|x|^{-(a+1) p+c}|u|^{p} d x .
$$

For $c>0, J$ is well-defined. Furthermore, $\Phi, J \in C^{1}\left(\mathcal{D}_{a}^{1, p}(\Omega), \mathbb{R}\right)$, and a real value λ is an eigenvalue of problem (1.6) if and only if there exists $u \in$ $\mathcal{D}_{a}^{1, p}(\Omega) \backslash\{0\}$ such that $\Phi^{\prime}(u)=\lambda J^{\prime}(u)$. At this point, we introduce the set

$$
\mathcal{M}:=\left\{u \in \mathcal{D}_{a}^{1, p}(\Omega): J(u)=1\right\} .
$$

Then $\mathcal{M} \neq \emptyset$ and \mathcal{M} is a C^{1} manifold in $\mathcal{D}_{a}^{1, p}(\Omega)$. It follows from the standard Lagrange multipliers arguments that the eigenvalues of (1.6) correspond to the critical values of $\left.\Phi\right|_{\mathcal{M}}$. From Theorem 1, Φ satisfies the (PS) condition on \mathcal{M}. Thus a sequence of critical values of $\left.\Phi\right|_{\mathcal{M}}$ comes from the LjusternikSchnirelman critical point theory on C^{1} manifolds. Let $\gamma(A)$ denote the Krasnoselski's genus on $\mathcal{D}_{a}^{1, p}(\Omega)$ and for any $k \in \mathbb{N}$, set

$$
\Gamma_{k}:=\{A \subset \mathcal{M}: A \text { is compact, symmetric and } \gamma(A) \geq k\} .
$$

Then the values

$$
\begin{equation*}
\lambda_{k}:=\inf _{A \in \Gamma_{k}} \max _{u \in A} \Phi(u) \tag{1.7}
\end{equation*}
$$

are critical values and hence are eigenvalues of problem (1.6). Moreover, $\lambda_{1} \leq$ $\lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots \rightarrow+\infty$.
One can also define another sequence of critical values minimaxing Φ along a smaller family of symmetric subsets of \mathcal{M}. Denote by S^{k} the unit sphere of \mathbb{R}^{k+1} and

$$
\mathcal{O}\left(S^{k}, \mathcal{M}\right):=\left\{h \in C\left(S^{k}, \mathcal{M}\right): h \text { is odd }\right\} .
$$

Then for any $k \in \mathbb{N}$, the value

$$
\begin{equation*}
\mu_{k}:=\inf _{h \in \mathcal{O}\left(S^{k-1}, \mathcal{M}\right)} \max _{t \in S^{k-1}} \Phi(h(t)) \tag{1.8}
\end{equation*}
$$

is an eigenvalue of (1.6). Moreover $\lambda_{k} \leq \mu_{k}$. This new sequence of eigenvalues was first introduced in [11] and later used in [10,9] for $a=0, c=p$.
In [15], we proved that the first positive eigenvalue $\lambda_{1}=\mu_{1}$ is simple, isolated and it is the unique eigenvalue with positive eigenfunction, and $\underline{\lambda}_{2}:=\inf \{\lambda \in$ $\mathbb{R}: \lambda$ is eigenvalue and $\left.\lambda>\lambda_{1}\right\}=\lambda_{2}=\mu_{2}$.
In this paper, based on the Mountain Pass Lemma and the Linking Argument, we will prove the existence of nontrivial weak solutions to problem (1.1) in the case where the parameter $\lambda \in\left(0, \lambda_{2}\right)$.

2. Linking Results

Let $e_{k} \in \mathcal{M}$ be the eigenfunction associated to λ_{k}, then $\left\|e_{k}\right\|_{\mathcal{D}_{a}^{1, p}(\Omega)}^{p}=\lambda_{k}$. Denote $G=\left\{u \in \mathcal{M}: \Phi(u)<\lambda_{2}\right\}$. Obviously, G is an open set containing e_{1} and e_{2}. Moreover $-G=G$. First we prove the following Lemma.

Lema 2. e_{1} and $-e_{1}$ do not belong to the same connected component of G.

Proof. Otherwise, there exists a continuous curve σ connecting e_{1} and $-e_{1}$ in G. Let $A=\sigma \cup\{-\sigma\}$, then from the definition of $\mathcal{M}, 0 \notin A$, hence $\gamma(A)>1$, by connectedness of A, so $A \in \Gamma_{2}$. Hence, as A is a compact set in G, and from the definition of G, we have $\max \{\Phi(u) ; u \in A\}<\lambda_{2}$ and this contradicts the definition of λ_{2}.
Q.E.D.

Let G_{1} be the connected component of G containing e_{1}, then $-G_{1}$ is the connected component of G containing $-e_{1}$. Let

$$
K_{1}=\left\{t u: u \in G_{1}, t>0\right\}, \quad K=-K_{1} \cup K_{1} .
$$

Then

$$
\begin{equation*}
\int_{\Omega}|x|^{-a p}|D u|^{p} d x<\lambda_{2} \int_{\Omega}|x|^{-(a+1) p+c}|u|^{p} d x, \forall u \in K, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}|x|^{-a p}|D u|^{p} d x=\lambda_{2} \int_{\Omega}|x|^{-(a+1) p+c}|u|^{p} d x, \forall u \in \partial K \tag{2.2}
\end{equation*}
$$

where ∂K is the boundary of K in $X=\mathcal{D}_{a}^{1, p}(\Omega)$. Let $(\partial K)_{\rho}=\{u \in \partial K$: $\|u\|=\rho\}$.
Set

$$
\begin{gathered}
\mathcal{E}_{1}=\operatorname{span}\left\{e_{1}\right\}, \mathcal{E}_{2}=\operatorname{span}\left\{e_{1}, e_{2}\right\} \\
\mathcal{Z}=\left\{u \in X: \int_{\Omega}|D u|^{p}=\lambda_{2} \int_{\Omega} V(x)|u|^{p}\right\}, \text { then }
\end{gathered}
$$

(2.2) implies $\partial K \subset \mathcal{Z}$.

In a similar way to Proposition 2.1-2.2 in [12] and Lemma 2.1-2.2 in [14], we obtain the following two linking results.

Theorem 3. Assume that $v \in \mathcal{E}_{1}, v \neq 0, Q=[-v, v]$ is the line segment connecting $-v$ and $v, \partial Q=\{-v, v\}$. Then $\partial Q \subset Q$ and \mathcal{Z} link in X, that is,
(i) $\partial Q \cap \mathcal{Z}=\emptyset$ and
(ii) For any continuous map $\psi: Q \rightarrow X$ with $\left.\psi\right|_{\partial Q}=i d$, it follows that $\psi(Q) \cap \mathcal{Z} \neq \emptyset$.

Proof. It is obvious that $\partial Q \cap \mathcal{Z}=\emptyset$. Now let $\psi: Q=[-v, v] \rightarrow X$ be continuous and $\left.\psi\right|_{\partial Q}=\mathrm{id}$. From the definition of K and Lemma 2, K has two connected components K_{1} and $-K_{1}$. Assume $v \in K_{1},-v \in-K_{1}$, then $\psi(Q)$ is a continuous curve connecting v and $-v$, therefore it holds that $\psi(Q) \cap \partial K \neq \emptyset$ and thus $\psi(Q) \cap \mathcal{Z} \neq \emptyset$.

Theorem 4. Assume $0<\rho<r<\infty$, let $\tilde{e}_{1}=e_{1} / \lambda_{1}^{1 / p}, \tilde{e}_{2}=e_{2} / \lambda_{2}^{1 / p}$, and

$$
Q=Q_{r}=\left\{u=t_{1} \tilde{e}_{1}+t_{2} \tilde{e}_{2}:\|u\| \leq r, t_{2} \geq 0\right\}
$$

$$
\begin{gathered}
\partial Q=\partial Q_{r}=\left\{u=t_{1} \tilde{e}_{1}:\left|t_{1}\right| \leq r\right\} \cup\left\{u \in Q_{r}:\|u\|=r\right\}, \\
Z_{\rho}=\{u \in \mathcal{Z}:\|u\|=\rho\} .
\end{gathered}
$$

Then $\partial Q_{r} \subset Q_{r}$ and Z_{ρ} link in X.
Proof. $\quad \partial Q_{r} \cap Z_{\rho}=\emptyset$ is obvious. Let $\psi: Q_{r} \rightarrow X$ be continuous and $\left.\psi\right|_{\partial Q_{r}}=\operatorname{id}$. Denote $d_{1}=\operatorname{dist}\left(\tilde{e}_{1}, \partial K\right)$ and define the mapping $P: X \rightarrow \mathcal{E}_{2}$ as follows:

$$
P(u)=\left\{\begin{array}{l}
\left(\min \left\{\operatorname{dist}(u, \partial K), r d_{1}\right\}\right) \tilde{e}_{1}+(\|u\|-\rho) \tilde{e}_{2}, \quad \text { if } u \notin-K_{1} \\
-\left(\min \left\{\operatorname{dist}(u, \partial K), r d_{1}\right\}\right) \tilde{e}_{1}+(\|u\|-\rho) \tilde{e}_{2}, \quad \text { if } u \in-K_{1}
\end{array}\right.
$$

It is easy to see that P is continuous, and that P maps $v=r \tilde{e}_{1}$ to $v_{1}=$ $P v=r d_{1} \tilde{e}_{1}+(r-\rho) \tilde{e}_{2}$, the origin 0 to $0_{1}=P 0=-\rho \tilde{e}_{2}$, the line segment $[v, 0]$ onto the line segment $\left[v_{1}, 0_{1}\right]$ homeomorphically; $-v=-r \tilde{e}_{1}$ to $v_{2}=$ $P(-v)=-r d_{1} \tilde{e}_{1}+(r-\rho) \tilde{e}_{2}$, the line segment $[0,-v]$ onto a line segment $\left[0_{1}, v_{2}\right]$ homeomorphically; and the half circle $\{u \in \partial Q:\|u\|=r\}$ which is from v to $-v$ in ∂Q onto the line segment $\left[v_{1}, v_{2}\right]$, where $P\left(r \tilde{e}_{2}\right)=(r-\rho) \tilde{e}_{2}$.
Let $f=P \circ \psi: Q \rightarrow \mathcal{E}_{2}$. From the discussion above, it holds that $0 \notin f(\partial Q)$, and when u turns a circuit along ∂Q counterclockwise, $f(u)$ also moves a circuit around the original 0 in \mathcal{E}_{2} counterclockwise. Hence by a degree argument, it holds that $\operatorname{deg}(f, Q, 0)=1$. So there exists some $u \in Q$ such that $f(u)=0$, i.e., $P(\psi(u))=0$, which implies that $\psi(u) \in \partial K$ and $\|\psi(u)\|=\rho$. Thus $\psi(u) \in(\partial K)_{\rho}$ and $\psi(Q) \cap(\partial K)_{\rho} \neq \emptyset$. Since $(\partial K)_{\rho} \subset Z_{\rho}$, it follows that $\psi(Q) \cap \mathcal{Z} \neq \emptyset$

3. Existence results for problem (1.1)

In this section, we will give some conditions on $f(u)$ to guarantee that the functional associated to problem (1.1) satisfies the Palais-Smale condition ((PS) condition) for $\lambda \in\left(0, \lambda_{2}\right)$, the geometric assumptions of the Mountain Pass Lemma (cf. Theorem 6.1 in Chapter 2 of [13]) in the case of $0<\lambda<\lambda_{1}$, and those of the linking theorem (cf. Theorem 8.4 in Chapter 2 of [13]) in the case of $\lambda_{1} \leq \lambda<\lambda_{2}$.
Assume $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies:
(f_{1}) (Subcritical growth) $|f(s)| \leq c_{1}|s|^{q-1}+c_{2}, \forall s \in \mathbb{R}$, where $1<q<$ $p^{*}(a, b)=\frac{N p}{N-d p}$.
$\left(\mathrm{f}_{2}\right) f \in C(\mathbb{R}, \mathbb{R}), f(0)=0, u f(u) \geq 0, u \in \mathbb{R}$.
(f_{3}) (Asymptotic property at infinity) $\exists \theta \in\left(p, p^{*}(a, b)\right)$ and $M>0$ such that $0<\theta F(u) \leq u f(u)$ for $|u| \geq M$, where $F(s)=\int_{0}^{s} f(t) d t$.
$\left(\mathrm{f}_{4}\right)$ (Asymptotic property at $\left.u=0\right) \lim _{s \rightarrow 0} f(s) /|s|^{p-1}=0$.

Theorem (1) and (f_{1}) imply that the functional $I: X \rightarrow \mathbb{R}$:

$$
I(u)=\frac{1}{p} \int_{\Omega}|x|^{-a p}|D u|^{p} d x-\frac{\lambda}{p} \int_{\Omega}|x|^{-(a+1) p+c}|u|^{p} d x-\int_{\Omega}|x|^{-b q} F(u) d x
$$

is well-defined and $I \in C^{1}(X ; \mathbb{R})$ and that the weak solutions of problem (1.1) is equivalent to the critical points of $I .\left(f_{2}\right)$ implies that 0 is a trivial solution to problem (1.1).

Lema 5. If f satisfies assumptions $\left(f_{1}\right)-\left(f_{3}\right)$, then I satisfies the (PS) condition for $\lambda \in\left(0, \lambda_{1}\right)$.

Proof. 1. The boundedness of $(P S)$ sequences of I.
Suppose $\left\{u_{m}\right\}$ is a $(P S)$ sequence of I, that is, there exists $C>0$ such that $\left|I\left(u_{m}\right)\right| \leq C$ and $I^{\prime}\left(u_{m}\right) \rightarrow 0$ in X^{\prime}, the dual space of X, as $m \rightarrow \infty$. The properties of the first eigenvalue λ_{1} imply that for any $u \in X$, one has

$$
\lambda_{1} \int_{\Omega}|x|^{-(a+1) p+c}|u|^{p} d x \leq \int_{\Omega}|x|^{-a p}|D u|^{p} d x
$$

Let $c:=\sup _{m} I\left(u_{m}\right)$. Then by the above inequality and $\left(\mathrm{f}_{3}\right)$, as $m \rightarrow \infty$, it holds that

$$
\begin{aligned}
c- & \frac{1}{\theta} o(1)\left\|u_{m}\right\|=\left(\frac{1}{p}-\frac{1}{\theta}\right) \int_{\Omega}|x|^{-a p}\left|D u_{m}\right|^{p} d x \\
& -\lambda\left(\frac{1}{p}-\frac{1}{\theta}\right) \int_{\Omega}|x|^{-(a+1) p+c}\left|u_{m}\right|^{p} d x+\int_{\Omega}|x|^{-b q}\left(\frac{1}{\theta} f\left(u_{m}\right) u_{m}-F\left(u_{m}\right)\right) d x \\
\geq & \left(\frac{1}{p}-\frac{1}{\theta}\right)\left(1-\frac{\lambda}{\lambda_{1}}\right) \int_{\Omega}|x|^{-a p}\left|D u_{m}\right|^{p} d x \\
& +\int_{\Omega\left(u_{m} \geq M\right)}|x|^{-b q}\left(\frac{1}{\theta} f\left(u_{m}\right) u_{m}-F\left(u_{m}\right)\right) d x \\
& +\int_{\Omega\left(u_{m}<M\right)}|x|^{-b q}\left(\frac{1}{\theta} f\left(u_{m}\right) u_{m}-F\left(u_{m}\right)\right) d x \\
\geq & \left(\frac{1}{p}-\frac{1}{\theta}\right)\left(1-\frac{\lambda}{\lambda_{1}}\right)\left\|u_{m}\right\|^{p}-C_{1},
\end{aligned}
$$

where $C_{1} \geq 0$ is a constant independent of u_{m}. The above estimate implies the boundedness of $\left\{u_{m}\right\}$ for $0<\lambda<\lambda_{1}$.
2. By $\left(\mathrm{f}_{1}\right), f$ satisfies the subcritical growth condition and by a standard argument there exists a convergent subsequence of $\left\{u_{m}\right\}$ as a consequence of the boundedness of $\left\{u_{m}\right\}$ in X.

Theorem 6. If f satisfies assumptions $\left(f_{1}\right)-\left(f_{4}\right)$, then problem (1.1) has a nontrivial weak solution $u \in W_{0}^{1, p}(\Omega)$ provided that $0<\lambda<\lambda_{1}$.

Proof. We will verify the geometric assumptions of the Mountain Pass Lemma (cf. [13] Chapter 2, Theorem 6.1):
(1) $I(0)=0$ is obvious;
(2) $\exists \rho>0, \exists \alpha>0:\|u\|=\rho \Longrightarrow I(u) \geq \alpha$;

In fact, $\forall u \in X$, it follows

$$
\begin{equation*}
I(u) \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right) \int_{\Omega}|x|^{-a p}|D u|^{p} d x-\int_{\Omega}|x|^{-b q} F(u) d x . \tag{3.1}
\end{equation*}
$$

From $\left(\mathrm{f}_{4}\right), \forall \epsilon>0, \exists \rho_{0}=\rho_{0}(\epsilon)$ such that if $0<\rho=\|u\|<\rho_{0}$, then $|f(u)|<$ $\epsilon|u|^{p-1}$, thus

$$
\int_{\Omega}|x|^{-b q} F(u) d x \leq \int_{\Omega}|x|^{-b q} \int_{0}^{u(x)} f(t) d t d x \leq \frac{\epsilon}{p} \int_{\Omega}|x|^{-b q}|u|^{p} d x \leq \frac{c_{0} \epsilon}{p}\|u\|
$$

Choose $c_{0} \epsilon_{0}=\left(1-\frac{\lambda}{\lambda_{1}}\right) / 2>0, \rho=\frac{\rho_{0}\left(\epsilon_{0}\right)}{2}$, from (3.1), one has

$$
\begin{equation*}
I(u) \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}-c_{0} \epsilon_{0}\right) \int_{\Omega}|x|^{-a p}|D u|^{p} d x \geq \frac{\lambda_{1}-\lambda}{2 \lambda_{1} p} \cdot \rho=: \alpha>0 \tag{3.2}
\end{equation*}
$$

(3) $\exists u_{1} \in X:\left\|u_{1}\right\| \geq \rho$ and $I\left(u_{1}\right)<0$.

In fact, from $\left(\mathrm{f}_{2}\right)$ and $\left(\mathrm{f}_{3}\right)$, one can deduce that there exist constants $c_{3}, c_{4}>0$ such that

$$
\begin{equation*}
F(s) \geq c_{3}|s|^{\theta}-c_{4}, \forall s \in \mathbb{R} \tag{3.3}
\end{equation*}
$$

Since $\theta>p$, a simple calculation shows that as $t \rightarrow \infty$, it holds that

$$
\begin{align*}
I\left(t e_{1}\right) \leq & \frac{t^{p}}{p} \int_{\Omega}|x|^{-a p}\left|D e_{1}\right|^{p} d x-\frac{\lambda t^{p}}{p} \int_{\Omega}|x|^{-(a+1) p+c}\left|e_{1}\right|^{p} d x \\
& -c_{3} t^{\theta} \int_{\Omega}|x|^{-b q}\left|e_{1}\right|^{\theta} d x+c_{4} \int_{\Omega}|x|^{-b q} d x \tag{3.4}\\
\rightarrow & -\infty
\end{align*}
$$

which implies that $I\left(t e_{1}\right)<0$ for $t>0$ large enough.
Thus Lemma 5 and the Mountain Pass Lemma imply that value

$$
\beta=\inf _{p \in P} \sup _{u \in p} E(u) \geq \alpha>0
$$

is critical, where $P=\left\{p \in C^{0}([0,1] ; X): p(0)=0, p(1)=u_{1}\right\}$. That is, there is a $u \in X$, such that

$$
E^{\prime}(u)=0, E(u)=\beta>0 .
$$

$E(u)=\beta>0$ implies $u \not \equiv 0$.
Lema 7. Assume that $\lambda_{1} \leq \lambda<\lambda_{2}$ and f satisfies assumptions $\left(f_{1}\right)-\left(f_{3}\right)$. Then I satisfies the $(C)_{c}$ condition introduced by Cerami in [5], that is, any sequence $\left\{u_{m}\right\} \subset X$ such that $I\left(u_{m}\right) \rightarrow c$ and $\left(1+\left\|u_{m}\right\|\right)\left\|I^{\prime}\left(u_{m}\right)\right\|_{X^{\prime}} \rightarrow 0$ possesses a convergent subsequence.

Proof.

1. The boundedness of the $(\mathrm{C})_{c}$ sequences in X.

Let $\left\{u_{m}\right\} \subset X$ be such that $I\left(u_{m}\right) \rightarrow c$ and $\left(1+\left\|u_{m}\right\|\right)\left\|I^{\prime}\left(u_{m}\right)\right\|_{X^{\prime}} \rightarrow 0$. Then from $\left(f_{2}\right),\left(f_{3}\right)$ and (3.3), as $m \rightarrow \infty$, one has
(3.5)

$$
\begin{aligned}
p c & +o(1)=p I\left(u_{m}\right)-<I^{\prime}\left(u_{m}\right), u_{m}> \\
& =\int_{\Omega}|x|^{-b q}\left(u_{m} f\left(u_{m}\right)-p F\left(u_{m}\right)\right) d x \\
& =\int_{\Omega}|x|^{-b q}\left(u_{m} f\left(u_{m}\right)-\theta F\left(u_{m}\right)\right) d x+(\theta-p) \int_{\Omega} \theta|x|^{-b q} F\left(u_{m}\right) d x \\
& \geq-C_{1}+(\theta-p) c_{3}\left|u_{m}\right|_{L^{\theta}\left(\Omega,|x|^{-b q}\right)}^{\theta}-C_{4} \int_{\Omega}|x|^{-b q} d x
\end{aligned}
$$

Thus $\theta>p$ implies the boundedness of $\left\{u_{m}\right\}$ in $L^{\theta}\left(\Omega,|x|^{-b q}\right)$.
On the other hand, a simple calculation shows that

$$
\begin{align*}
\theta c+ & o(1)=\theta I\left(u_{m}\right)-<I^{\prime}\left(u_{m}\right), u_{m}> \\
= & \left(\frac{\theta}{p}-1\right)\left\|D u_{m}\right\|_{L^{p}\left(\Omega,|x|^{-a p}\right)}^{p}-\lambda\left(\frac{\theta}{p}-1\right) \int_{\Omega}|x|^{-(a+1) p+c}\left|u_{m}\right|^{p} d x \\
& +\int_{\Omega}|x|^{-b q}\left(u_{m} f\left(u_{m}\right)-\theta F\left(u_{m}\right)\right) d x \\
\geq & \left(\frac{\theta}{p}-1\right) \int_{\Omega}|x|^{-a p}\left|D u_{m}\right|^{p} d x-C \tag{3.6}\\
& +\int_{\Omega\left(u_{m}<M\right)}|x|^{-b q}\left(u_{m} f\left(u_{m}\right)-\theta F\left(u_{m}\right)\right) d x \\
& +\int_{\Omega\left(u_{m} \geq M\right)}|x|^{-b q}\left(u_{m} f\left(u_{m}\right)-\theta F\left(u_{m}\right)\right) d x \\
\geq & \left(\frac{\theta}{p}-1\right)\left\|D u_{m}\right\|_{L^{p}\left(\Omega,|x|^{-a p}\right)}^{p}-C
\end{align*}
$$

where $C>0$ is a universal constant independent of u_{m}, which may be different from line to line. Thus $\theta>p$ and (3.6) imply the boundedness of $\left\{u_{m}\right\}$ in X. 2. By $\left(\mathrm{f}_{1}\right), f$ satisfies the subcritical growth condition, by a standard argument, one can obtain that there exists a convergent subsequence of $\left\{u_{m}\right\}$ based on the boundedness of $\left\{u_{m}\right\}$ in X.

Theorem 8. Suppose f satisfies assumptions $\left(f_{1}\right)-\left(f_{4}\right)$, and furthermore, $\theta>$ $p s /(s-1)$ in $\left(f_{3}\right)$. Then problem (1.1) has a nontrivial weak solution $u \in X$ provided that $\lambda_{1} \leq \lambda<\lambda_{2}$.

Proof. It was shown in [3] that the $(C)_{c}$ condition actually suffices to get a deformation theorem (Theorem 1.3 in [3], and it was also remarked in [8] that
the proofs of the standard Mountain Pass Lemma and saddle-point theorem go through without change once the deformation theorem (Theorem 1.3 in [3] is obtained with the $(C)_{c}$ condition. Here we verify the assumptions of standard Linking Argument Theorem(cf. [13] Chapter 2, Theorem 8.4) hold with the $(C)_{c}$ condition replacing the $(\mathrm{PS})_{c}$ condition.
Since $\partial Q_{r} \subset Q_{r}$ and Z_{ρ} link in X, it suffices to show that
(1) $\alpha_{0}=\sup _{u \in \partial Q_{r}} I(u) \leq 0$, when $r>0$ is large enough.
(2) $\alpha=\inf _{u \in Z_{\rho}} I(u)>0$, when $\rho>0$ is small enough.

In fact, let $u=t e_{1} \in \mathcal{E}_{1}$, from assumption $\left(\mathrm{f}_{2}\right), F(x, s) \geq 0$ for all $s \in \mathbb{R}$ and almost every $x \in \Omega$, thus it holds that

$$
\begin{align*}
I(u)=I\left(t e_{1}\right) & \leq \frac{|t|^{p}}{p} \int_{\Omega}|x|^{-a p}\left|D e_{1}\right|^{p} d x-\frac{|t|^{p} \lambda}{p} \int_{\Omega}|x|^{-(a+1) p+c}\left|e_{1}\right|^{p} d x \tag{3.7}\\
& =\frac{|t|^{p}}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right)\left\|e_{1}\right\| \leq 0
\end{align*}
$$

Noticing that

$$
\left|u_{m}\right|_{L^{\theta}(\Omega,|x|-b q)}=\left(\int_{\Omega}|x|^{-b q}|u|^{\theta}\right)^{1 / \theta},
$$

is a norm on \mathcal{E}_{2}, and that the norms of finite dimensional space are equivalent, it follows that there exists a constant $c_{5}>0$ such that

$$
\int_{\Omega}|x|^{-b q}|u|^{\theta} d x \geq c_{5}\|u\|^{\theta}
$$

From (3.3), it holds that

$$
\begin{equation*}
I(u) \leq \frac{1}{p}\|u\|^{p}-c_{3} c_{5}\|u\|^{\theta}+c_{4}|\Omega| \tag{3.8}
\end{equation*}
$$

Since $\theta>p$, it follows

$$
I(u) \rightarrow-\infty, \text { as }\|u\| \rightarrow \infty, u \in \mathcal{E}_{2}
$$

this implies (1).
From $\left(f_{4}\right)$ and $\left(f_{1}\right)$, it follows that

$$
\int_{\Omega}|x|^{-b q} F(u) d x=o\left(\|u\|^{p}\right) \text { as } u \rightarrow 0 \text { in } X
$$

then for any $u \in Z$, it holds that

$$
\begin{equation*}
I(u)=\frac{1}{p}\left(1-\frac{\lambda}{\lambda_{2}}\right) \int_{\Omega}|x|^{-a p}|D u|^{p} d x+o\left(\|u\|^{p}\right) \tag{3.9}
\end{equation*}
$$

Since $\lambda<\lambda_{2}$, (3.9) implies (2).

Thus the Linking Argument Theorem (cf. [13] Chapter 2, Theorem 8.4) implies that the value

$$
\beta=\inf _{h \in \Gamma} \sup _{u \in Q} E(h(u)) \geq \alpha>0
$$

is critical, where $\Gamma=\left\{h \in C^{0}(X ; X) ;\left.h\right|_{\partial Q}=\mathrm{id}\right\}$. That is, there is a $u \in X$, such that

$$
E^{\prime}(u)=0, E(u)=\beta>0 .
$$

$E(u)=\beta>0$ implies $u \not \equiv 0$.

References

[1] A. Ambrosetti \& P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
[2] V. Benci \& P. H. Rabinowitz, Critical point theorems for indefinite functional, Invent. Math., 52 (1979), 241-273.
[3] P. Bartolo, V. Benci \& D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Analysis, 7 (1983), 981-1012.
[4] L. Caffarelli, R. Kohn \& L. Nirenberg, First order interpolation inequalities with weights, Compositio Mathematica, 53(1984), 259-275.
[5] G. Cerami, Un criterio de esistenza per i punti critici su varieta ilimitate, Rc. Ist. Lomb. Sci. Lett., 112 (1978), 332-336.
[6] K. C. Chang, Critical Point Theory and Applications, Shanghai Science and Technology Press, Shanghai, 1986 (in Chinese).
[7] K. S. Chou \& C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc., 2 (1993), 137-151.
[8] D. G. Costa \& C. A. Magalhaes, Existence results for perturbations of the p-Laplacian, Nonlinear Analysis, TMA, 24 (1995), No.3, 409-418.
[9] M. Cuesta, Eigenvalue problems for the p-Laplacian with indefinite weights, Electronic Journal of Differential Equations, 2001 (2001), No. 33, 1-9.
[10] M. Cuesta, On the Fučik spectrum of the Laplacian and p-Laplacian, Proceedings of 2000 Seminar in Differential Equations, Kvilda (Czech Republic), to appear.
[11] P. Drabek P. \& S. Robinson S, Resonance problems for the p-Laplacian, J. of Funct. Anal., 169(1999), 189-200.
[12] X. L. Fan \& Z. C. Li, Linking and existence results for perturbations of the p-Laplacian, Nonli. Anal., 42 (2000), 1413-1420.
[13] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 2nd ed. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 34, Springer, Berlin-Heidelberg-New York (1996).
[14] B. J. Xuan, Existence results for a superlinear p-Laplacian equation with indefinite weights, to appear in Nonlinear Analysis, TMA.
[15] B. J. Xuan, The eigenvalue problem of a singular quasilinear elliptic equation, submitted to Applicable Analysis, July, 2003.
[16] B. J. Xuan, The solvability of Brezis-Nirenberg type problems of singular quasilinear elliptic equation, submitted to Nonlinear Analysis, TMA, June, 2003.

