EXISTENCE RESULTS FOR A SUPERLINEAR SINGULAR EQUATION OF CAFFARELLI-KOHN-NIRENBERG TYPE

BENJIN XUAN (*)

ABSTRACT. In this paper, using the Mountain Pass Lemma and the Linking Argument, we prove the existence of nontrivial weak solutions for the Dirichlet problem for the superlinear equation of Caffarelli-Kohn-Nirenberg type in the case where the parameter $\lambda \in (0, \lambda_2)$, λ_2 being the second positive eigenvalue of the quasilinear elliptic equation of Caffarelli-Kohn-Nirenberg type.

KEY WORDS: singular equation, Caffarelli-Kohn-Nirenberg inequality, Mountain Pass Lemma, Linking Argument.

2000 Mathematics Subject Classification: 35J60.

1. Introduction.

In this paper, we investigate the existence of weak solutions for the following Dirichlet problem for the superlinear singular equation of Caffarelli-Kohn-Nirenberg type:

$$\begin{cases} -{\rm div}\,(|x|^{-ap}|Du|^{p-2}Du) = \lambda |x|^{-(a+1)p+c}|u|^{p-2}u + |x|^{-bq}f(u), \text{ in } \Omega \\ u = 0, \text{ on } \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^n$ is an open bounded domain with C^1 boundary and $0 \in \Omega$, $1 , <math>0 \le a < \frac{n-p}{p}$, $a \le b \le a+1$, $q < p^*(a,b) = \frac{np}{n-dp}$, $d = 1+a-b \in [0,\ 1]$, and c > 0.

University of Science and Technology of China

Universidad Nacional de Colombia

This work is supported by Grants 10071080 and 10101024 from the National Science Foundation of China.

 $e\hbox{-mail:}wenyuanxbj@yahoo.com.$

^(*) Benjin Xuan. Department of Mathematics

For $a=0,\ c=p,$ many results of linking-type for critical points have been obtained (e.g. [1, 2, 6] for p=2, [12] for $p\neq 2$ and [14] for the case with indefinite weights).

The starting point of the variational approach to these problems with $a \geq 0$ is the following weighted Sobolev-Hardy inequality due to Caffarelli, Kohn and Nirenberg [4], which is called the Caffarelli-Kohn-Nirenberg inequality. Let $1 . For all <math>u \in C_0^{\infty}(\mathbb{R}^n)$, there is a constant $C_{a,b} > 0$ such that

(1.2)
$$\left(\int_{\mathbb{R}^n} |x|^{-bq} |u|^q dx \right)^{p/q} \le C_{a,b} \int_{\mathbb{R}^n} |x|^{-ap} |Du|^p dx,$$

where

$$(1.3) -\infty < a < \frac{n-p}{p}, \ a \le b \le a+1, \ q = p^*(a,b) = \frac{np}{n-dp}, \ d = 1+a-b.$$

Let $\Omega \subset \mathbb{R}^n$ be an open bounded domain with C^1 boundary and $0 \in \Omega$, $\mathcal{D}_a^{1,p}(\Omega)$ be the completion of $C_0^{\infty}(\mathbb{R}^n)$, with respect to the norm $\|\cdot\|$ defined by

$$||u|| = \left(\int_{\Omega} |x|^{-ap} |Du|^p dx\right)^{1/p}.$$

From the boundedness of Ω and the standard approximation argument, it is easy to see that (1.2) holds for any $u \in \mathcal{D}_{a}^{1,p}(\Omega)$ in the sense:

$$\left(\int_{\Omega}|x|^{-\alpha}|u|^{r}\,dx\right)^{p/r}\leq C\int_{\Omega}|x|^{-ap}|Du|^{p}\,dx,$$

for $1 \leq r \leq \frac{np}{n-p}$, $\alpha \leq (1+a)r + n(1-\frac{r}{p})$, that is, the embedding $\mathcal{D}_a^{1,p}(\Omega) \hookrightarrow L^r(\Omega,|x|^{-\alpha})$ is continuous, where $L^r(\Omega,|x|^{-\alpha})$ is the weighted L^r space with norm:

$$||u||_{r,\alpha} := ||u||_{L^r(\Omega,|x|^{-\alpha})} = \left(\int_{\Omega} |x|^{-\alpha} |u|^r dx\right)^{1/r}.$$

In fact, we have the following compact embedding result which is an extension of the classical Rellich-Kondrachov compactness theorem (cf. [7] for p=2 and [16] for the general case). For convenience of the readers, we include the proof here.

Theorem 1 (Compact embedding theorem). Suppose that $\Omega \subset \mathbb{R}^n$ is an open bounded domain with C^1 boundary and $0 \in \Omega$, $1 , <math>-\infty < a < \frac{n-p}{p}$. The embedding $\mathcal{D}_a^{1,p}(\Omega) \hookrightarrow L^r(\Omega,|x|^{-\alpha})$ is compact if $1 \le r < \frac{np}{n-p}$, $\alpha < (1+a)r + n(1-\frac{r}{p})$.

Proof. The continuity of the embedding is a direct consequence of the Caffarelli-Kohn-Nirenberg inequality (1.2) or (1.4). To prove the compactness, let $\{u_m\}$ be a bounded sequence in $\mathcal{D}_a^{1,p}(\Omega)$. For any $\rho > 0$, if $B_{\rho}(0) \subset \Omega$ is the ball centered at the origin with radius ρ , it holds that $\{u_m\} \subset W^{1,p}(\Omega \setminus B_{\rho}(0))$.

Then the classical Rellich-Kondrachov compactness theorem guarantees the existence of a convergent subsequence of $\{u_m\}$ in $L^r(\Omega \setminus B_\rho(0))$. By taking a diagonal sequence, we can assume without loss of generality that $\{u_m\}$ converges in $L^r(\Omega \setminus B_\rho(0))$ for any $\rho > 0$.

On the other hand, for any $1 \le r < \frac{np}{n-p}$, there exists a $b \in (a,a+1]$ such that $r < q = p^*(a,b) = \frac{np}{n-dp}, \ d = 1+a-b \in [0,\ 1)$. From the Caffarelli-Kohn-Nirenberg inequality (1.2) or (1.4), $\{u_m\}$ is also bounded in $L^q(\Omega,|x|^{-bq})$. By the Hölder inequality, for any $\delta > 0$, it holds that

$$\int_{|x|<\delta} |x|^{-\alpha} |u_m - u_j|^r dx \leq \left(\int_{|x|<\delta} |x|^{-(\alpha - br) \frac{q}{q - r}} dx \right)^{1 - \frac{r}{q}} \\
\times \left(\int_{\Omega} |x|^{-br} |u_m - u_j|^r dx \right)^{r/q} \\
\leq C \left(\int_{0}^{\delta} r^{n - 1 - (\alpha - br) \frac{q}{q - r}} dr \right)^{1 - \frac{r}{q}} \\
= C \delta^{n - (\alpha - br) \frac{q}{q - r}},$$

where C > 0 is a constant independent of m. Since $\alpha < (1+a)r + n(1-\frac{r}{p})$, it holds that $n - (\alpha - br)\frac{q}{q-r} > 0$. Therefore, for a given $\varepsilon > 0$, we first fix $\delta > 0$ such that

$$\int_{|x|<\delta} |x|^{-\alpha} |u_m - u_j|^r \, dx \le \frac{\varepsilon}{2}, \ \forall \ m, j \in \mathbb{N},$$

then we choose $N \in \mathbb{N}$ such that

$$\int_{\Omega \setminus B_{\delta}(0)} |x|^{-\alpha} |u_m - u_j|^r dx \le C_{\alpha} \int_{\Omega \setminus B_{\delta}(0)} |u_m - u_j|^r dx \le \frac{\varepsilon}{2}, \ \forall \ m, j \ge N,$$

where $C_{\alpha} = \delta^{-\alpha}$ if $\alpha \geq 0$ and $C_{\alpha} = (\operatorname{diam}(\Omega))^{-\alpha}$ if $\alpha < 0$. Thus

$$\int_{\Omega} |x|^{-\alpha} |u_m - u_j|^r \, dx \le \varepsilon, \ \forall \ m, j \ge N,$$

that is, $\{u_m\}$ is a Cauchy sequence in $L^q(\Omega, |x|^{-bq})$.

Our results will rely mainly on the results of the eigenvalue problem corresponding to problem (1.1) in [15]. Let us first recall the main results of [15]. Consider the nonlinear eigenvalue problem:

(1.6)
$$\begin{cases} -\operatorname{div}(|x|^{-ap}|Du|^{p-2}Du) = \lambda |x|^{-(a+1)p+c}|u|^{p-2}u, \text{ in } \Omega \\ u = 0, \text{ on } \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^n$ is an open bounded domain with C^1 boundary and $0 \in \Omega$, 1 0.

Let us introduce the following functionals in $\mathcal{D}_a^{1,p}(\Omega)$:

$$\Phi(u) := \int_{\Omega} |x|^{-ap} |Du|^p dx$$
, and $J(u) := \int_{\Omega} |x|^{-(a+1)p+c} |u|^p dx$.

For c>0, J is well-defined. Furthermore, $\Phi,J\in C^1(\mathcal{D}_a^{1,p}(\Omega),\mathbb{R})$, and a real value λ is an eigenvalue of problem (1.6) if and only if there exists $u\in \mathcal{D}_a^{1,p}(\Omega)\setminus\{0\}$ such that $\Phi'(u)=\lambda J'(u)$. At this point, we introduce the set

$$\mathcal{M} := \{ u \in \mathcal{D}_a^{1,p}(\Omega) : J(u) = 1 \}.$$

Then $\mathcal{M} \neq \emptyset$ and \mathcal{M} is a C^1 manifold in $\mathcal{D}_a^{1,p}(\Omega)$. It follows from the standard Lagrange multipliers arguments that the eigenvalues of (1.6) correspond to the critical values of $\Phi|_{\mathcal{M}}$. From Theorem 1, Φ satisfies the (PS) condition on \mathcal{M} . Thus a sequence of critical values of $\Phi|_{\mathcal{M}}$ comes from the Ljusternik-Schnirelman critical point theory on C^1 manifolds. Let $\gamma(A)$ denote the Krasnoselski's genus on $\mathcal{D}_a^{1,p}(\Omega)$ and for any $k \in \mathbb{N}$, set

$$\Gamma_k := \{ A \subset \mathcal{M} : A \text{ is compact, symmetric and } \gamma(A) \geq k \}.$$

Then the values

(1.7)
$$\lambda_k := \inf_{A \in \Gamma_k} \max_{u \in A} \Phi(u)$$

are critical values and hence are eigenvalues of problem (1.6). Moreover, $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k \leq \cdots \rightarrow +\infty$.

One can also define another sequence of critical values minimaxing Φ along a smaller family of symmetric subsets of \mathcal{M} . Denote by S^k the unit sphere of \mathbb{R}^{k+1} and

$$\mathcal{O}(S^k, \mathcal{M}) := \{ h \in C(S^k, \mathcal{M}) : h \text{ is odd} \}.$$

Then for any $k \in \mathbb{N}$, the value

(1.8)
$$\mu_k := \inf_{h \in \mathcal{O}(S^{k-1}, \mathcal{M})} \max_{t \in S^{k-1}} \Phi(h(t))$$

is an eigenvalue of (1.6). Moreover $\lambda_k \leq \mu_k$. This new sequence of eigenvalues was first introduced in [11] and later used in [10, 9] for a = 0, c = p.

In [15], we proved that the first positive eigenvalue $\lambda_1 = \mu_1$ is simple, isolated and it is the unique eigenvalue with positive eigenfunction, and $\underline{\lambda}_2 := \inf\{\lambda \in \mathbb{R} : \lambda \text{ is eigenvalue and } \lambda > \lambda_1\} = \lambda_2 = \mu_2$.

In this paper, based on the Mountain Pass Lemma and the Linking Argument, we will prove the existence of nontrivial weak solutions to problem (1.1) in the case where the parameter $\lambda \in (0, \lambda_2)$.

2. Linking results

Let $e_k \in \mathcal{M}$ be the eigenfunction associated to λ_k , then $||e_k||^p_{\mathcal{D}_a^{1,p}(\Omega)} = \lambda_k$. Denote $G = \{u \in \mathcal{M} : \Phi(u) < \lambda_2\}$. Obviously, G is an open set containing e_1 and e_2 . Moreover -G = G. First we prove the following Lemma.

Lema 2. e_1 and $-e_1$ do not belong to the same connected component of G.

Proof. Otherwise, there exists a continuous curve σ connecting e_1 and $-e_1$ in G. Let $A = \sigma \cup \{-\sigma\}$, then from the definition of \mathcal{M} , $0 \notin A$, hence $\gamma(A) > 1$, by connectedness of A, so $A \in \Gamma_2$. Hence, as A is a compact set in G, and from the definition of G, we have $\max\{\Phi(u); u \in A\} < \lambda_2$ and this contradicts the definition of λ_2 .

Q.E.D.

Let G_1 be the connected component of G containing e_1 , then $-G_1$ is the connected component of G containing $-e_1$. Let

$$K_1 = \{tu: u \in G_1, t > 0\}, K = -K_1 \cup K_1.$$

Then

(2.1)
$$\int_{\Omega} |x|^{-ap} |Du|^p dx < \lambda_2 \int_{\Omega} |x|^{-(a+1)p+c} |u|^p dx, \ \forall u \in K,$$

and

(2.2)
$$\int_{\Omega} |x|^{-ap} |Du|^p dx = \lambda_2 \int_{\Omega} |x|^{-(a+1)p+c} |u|^p dx, \ \forall u \in \partial K,$$

where ∂K is the boundary of K in $X=\mathcal{D}_a^{1,p}(\Omega)$. Let $(\partial K)_\rho=\{u\in\partial K:\|u\|=\rho\}$. Set

$$\mathcal{E}_1 = \operatorname{span} \{e_1\}, \ \mathcal{E}_2 = \operatorname{span} \{e_1, \ e_2\},$$
$$\mathcal{Z} = \{u \in X: \ \int_{\Omega} |Du|^p = \lambda_2 \int_{\Omega} V(x) |u|^p\}, then$$

(2.2) implies $\partial K \subset \mathcal{Z}$.

In a similar way to Proposition 2.1-2.2 in [12] and Lemma 2.1-2.2 in [14], we obtain the following two linking results.

Theorem 3. Assume that $v \in \mathcal{E}_1$, $v \neq 0$, Q = [-v, v] is the line segment connecting -v and v, $\partial Q = \{-v, v\}$. Then $\partial Q \subset Q$ and \mathcal{Z} link in X, that is,

- (i) $\partial Q \cap \mathcal{Z} = \emptyset$ and
- (ii) For any continuous map $\psi: Q \to X$ with $\psi|_{\partial Q} = id$, it follows that $\psi(Q) \cap \mathcal{Z} \neq \emptyset$.

Proof. It is obvious that $\partial Q \cap \mathcal{Z} = \emptyset$. Now let $\psi : Q = [-v, v] \to X$ be continuous and $\psi|_{\partial Q} = \mathrm{id}$. From the definition of K and Lemma 2, K has two connected components K_1 and $-K_1$. Assume $v \in K_1$, $-v \in -K_1$, then $\psi(Q)$ is a continuous curve connecting v and -v, therefore it holds that $\psi(Q) \cap \partial K \neq \emptyset$ and thus $\psi(Q) \cap \mathcal{Z} \neq \emptyset$.

Theorem 4. Assume
$$0 < \rho < r < \infty$$
, let $\tilde{e}_1 = e_1/\lambda_1^{1/p}$, $\tilde{e}_2 = e_2/\lambda_2^{1/p}$, and $Q = Q_r = \{u = t_1 \tilde{e}_1 + t_2 \tilde{e}_2 : ||u|| \le r, t_2 \ge 0\}$,

$$\partial Q = \partial Q_r = \{ u = t_1 \tilde{e}_1 : |t_1| \le r \} \cup \{ u \in Q_r : ||u|| = r \},$$

$$Z_\rho = \{ u \in \mathcal{Z} : ||u|| = \rho \}.$$

Then $\partial Q_r \subset Q_r$ and Z_ρ link in X.

 $\partial Q_r \cap Z_\rho = \emptyset$ is obvious. Let $\psi: Q_r \to X$ be continuous and $\psi|_{\partial Q_r} = \mathrm{id}$. Denote $d_1 = \mathrm{dist}\left(\tilde{e}_1, \partial K\right)$ and define the mapping $P: X \to \mathcal{E}_2$ as follows:

$$P(u) = \begin{cases} & \left(\min\left\{\operatorname{dist}\left(u,\partial K\right),rd_{1}\right\}\right)\tilde{e}_{1} + (\|u\| - \rho)\tilde{e}_{2}, & \text{if } u \notin -K_{1}; \\ & -\left(\min\left\{\operatorname{dist}\left(u,\partial K\right),rd_{1}\right\}\right)\tilde{e}_{1} + (\|u\| - \rho)\tilde{e}_{2}, & \text{if } u \in -K_{1}. \end{cases}$$

It is easy to see that P is continuous, and that P maps $v = r\tilde{e}_1$ to $v_1 =$ $Pv = rd_1\tilde{e}_1 + (r - \rho)\tilde{e}_2$, the origin 0 to $0_1 = P0 = -\rho\tilde{e}_2$, the line segment [v,0] onto the line segment $[v_1,0_1]$ homeomorphically; $-v=-r\tilde{e}_1$ to $v_2=$ $P(-v) = -rd_1\tilde{e}_1 + (r-\rho)\tilde{e}_2$, the line segment [0,-v] onto a line segment $[0_1, v_2]$ homeomorphically; and the half circle $\{u \in \partial Q : ||u|| = r\}$ which is from v to -v in ∂Q onto the line segment $[v_1, v_2]$, where $P(r\tilde{e}_2) = (r - \rho)\tilde{e}_2$. Let $f = P \circ \psi : Q \to \mathcal{E}_2$. From the discussion above, it holds that $0 \notin f(\partial Q)$, and when u turns a circuit along ∂Q counterclockwise , f(u) also moves a circuit around the original 0 in \mathcal{E}_2 counterclockwise. Hence by a degree argument, it holds that deg(f,Q,0) = 1. So there exists some $u \in Q$ such that f(u) = 0, i.e., $P(\psi(u)) = 0$, which implies that $\psi(u) \in \partial K$ and $||\psi(u)|| = \rho$. Thus $\psi(u) \in (\partial K)_{\rho}$ and $\psi(Q) \cap (\partial K)_{\rho} \neq \emptyset$. Since $(\partial K)_{\rho} \subset Z_{\rho}$, it follows that $\psi(Q) \cap \mathcal{Z} \neq \emptyset$

3. Existence results for problem (1.1)

In this section, we will give some conditions on f(u) to guarantee that the functional associated to problem (1.1) satisfies the Palais-Smale condition ((PS) condition) for $\lambda \in (0, \lambda_2)$, the geometric assumptions of the Mountain Pass Lemma (cf. Theorem 6.1 in Chapter 2 of [13]) in the case of $0 < \lambda < \lambda_1$, and those of the linking theorem (cf. Theorem 8.4 in Chapter 2 of [13]) in the case of $\lambda_1 \leq \lambda < \lambda_2$.

Assume $f: \mathbb{R} \to \mathbb{R}$ satisfies:

- (f₁) (Subcritical growth) $|f(s)| \leq c_1 |s|^{q-1} + c_2$, $\forall s \in \mathbb{R}$, where $1 < q < p^*(a,b) = \frac{Np}{N-dp}$.
- (f₂) $f \in C(\mathbb{R}, \mathbb{R}), \dot{f}(0) = 0, uf(u) \ge 0, u \in \mathbb{R}.$
- (f₃) (Asymptotic property at infinity) $\exists \theta \in (p, p^*(a,b))$ and M > 0 such that $0 < \theta F(u) \le u f(u)$ for $|u| \ge M$, where $F(s) = \int_0^s f(t) dt$. (f₄) (Asymptotic property at u = 0) $\lim_{s \to 0} f(s)/|s|^{p-1} = 0$.

Theorem (1) and (f₁) imply that the functional $I: X \to \mathbb{R}$:

$$I(u) = \frac{1}{p} \int_{\Omega} |x|^{-ap} |Du|^p \, dx - \frac{\lambda}{p} \int_{\Omega} |x|^{-(a+1)p+c} |u|^p \, dx - \int_{\Omega} |x|^{-bq} F(u) dx$$

is well-defined and $I \in C^1(X; \mathbb{R})$ and that the weak solutions of problem (1.1) is equivalent to the critical points of I. (f₂) implies that 0 is a trivial solution to problem (1.1).

Lema 5. If f satisfies assumptions (f_1) - (f_3) , then I satisfies the (PS) condition for $\lambda \in (0, \lambda_1)$.

Proof. 1. The boundedness of (PS) sequences of I.

Suppose $\{u_m\}$ is a (PS) sequence of I, that is, there exists C > 0 such that $|I(u_m)| \leq C$ and $I'(u_m) \to 0$ in X', the dual space of X, as $m \to \infty$. The properties of the first eigenvalue λ_1 imply that for any $u \in X$, one has

$$\lambda_1 \int_{\Omega} |x|^{-(a+1)p+c} |u|^p dx \le \int_{\Omega} |x|^{-ap} |Du|^p dx.$$

Let $c := \sup_{m} I(u_m)$. Then by the above inequality and (f_3) , as $m \to \infty$, it holds that

$$c - \frac{1}{\theta}o(1)\|u_m\| = (\frac{1}{p} - \frac{1}{\theta})\int_{\Omega} |x|^{-ap}|Du_m|^p dx$$

$$-\lambda(\frac{1}{p} - \frac{1}{\theta})\int_{\Omega} |x|^{-(a+1)p+c}|u_m|^p dx + \int_{\Omega} |x|^{-bq}(\frac{1}{\theta}f(u_m)u_m - F(u_m)) dx$$

$$\geq (\frac{1}{p} - \frac{1}{\theta})(1 - \frac{\lambda}{\lambda_1})\int_{\Omega} |x|^{-ap}|Du_m|^p dx$$

$$+ \int_{\Omega(u_m \ge M)} |x|^{-bq}(\frac{1}{\theta}f(u_m)u_m - F(u_m)) dx$$

$$+ \int_{\Omega(u_m < M)} |x|^{-bq}(\frac{1}{\theta}f(u_m)u_m - F(u_m)) dx$$

$$\geq (\frac{1}{p} - \frac{1}{\theta})(1 - \frac{\lambda}{\lambda_1})\|u_m\|^p - C_1,$$

where $C_1 \geq 0$ is a constant independent of u_m . The above estimate implies the boundedness of $\{u_m\}$ for $0 < \lambda < \lambda_1$.

2. By (f_1) , f satisfies the subcritical growth condition and by a standard argument there exists a convergent subsequence of $\{u_m\}$ as a consequence of the boundedness of $\{u_m\}$ in X.

Theorem 6. If f satisfies assumptions (f_1) - (f_4) , then problem (1.1) has a nontrivial weak solution $u \in W_0^{1,p}(\Omega)$ provided that $0 < \lambda < \lambda_1$.

Proof. We will verify the geometric assumptions of the Mountain Pass Lemma (cf. [13] Chapter 2, Theorem 6.1):

- (1) I(0) = 0 is obvious;
- (2) $\exists \rho > 0$, $\exists \alpha > 0$: $||u|| = \rho \implies I(u) \ge \alpha$;

In fact, $\forall u \in X$, it follows

(3.1)
$$I(u) \ge \frac{1}{p} (1 - \frac{\lambda}{\lambda_1}) \int_{\Omega} |x|^{-ap} |Du|^p dx - \int_{\Omega} |x|^{-bq} F(u) dx.$$

From (f_4) , $\forall \epsilon > 0$, $\exists \rho_0 = \rho_0(\epsilon)$ such that if $0 < \rho = ||u|| < \rho_0$, then $|f(u)| < \epsilon |u|^{p-1}$, thus

$$\int_{\Omega} |x|^{-bq} F(u) dx \le \int_{\Omega} |x|^{-bq} \int_{0}^{u(x)} f(t) dt dx \le \frac{\epsilon}{p} \int_{\Omega} |x|^{-bq} |u|^{p} dx \le \frac{c_0 \epsilon}{p} ||u||.$$

Choose $c_0 \epsilon_0 = (1 - \frac{\lambda}{\lambda_1})/2 > 0$, $\rho = \frac{\rho_0(\epsilon_0)}{2}$, from (3.1), one has

$$(3.2) I(u) \ge \frac{1}{p} \left(1 - \frac{\lambda}{\lambda_1} - c_0 \epsilon_0\right) \int_{\Omega} |x|^{-ap} |Du|^p dx \ge \frac{\lambda_1 - \lambda}{2\lambda_1 p} \cdot \rho =: \alpha > 0.$$

(3)
$$\exists u_1 \in X : ||u_1|| \ge \rho \text{ and } I(u_1) < 0.$$

In fact, from (f_2) and (f_3) , one can deduce that there exist constants $c_3, c_4 > 0$ such that

$$(3.3) F(s) \ge c_3 |s|^{\theta} - c_4, \ \forall s \in \mathbb{R}.$$

Since $\theta > p$, a simple calculation shows that as $t \to \infty$, it holds that

(3.4)
$$I(te_1) \leq \frac{t^p}{p} \int_{\Omega} |x|^{-ap} |De_1|^p dx - \frac{\lambda t^p}{p} \int_{\Omega} |x|^{-(a+1)p+c} |e_1|^p dx - c_3 t^{\theta} \int_{\Omega} |x|^{-bq} |e_1|^{\theta} dx + c_4 \int_{\Omega} |x|^{-bq} dx \to -\infty.$$

which implies that $I(te_1) < 0$ for t > 0 large enough.

Thus Lemma 5 and the Mountain Pass Lemma imply that value

$$\beta = \inf_{p \in P} \sup_{u \in p} E(u) \ge \alpha > 0$$

is critical, where $P = \{p \in C^0([0,1]; X) : p(0) = 0, p(1) = u_1\}$. That is, there is a $u \in X$, such that

$$E'(u) = 0, \ E(u) = \beta > 0.$$

$$E(u) = \beta > 0$$
 implies $u \not\equiv 0$.

Lema 7. Assume that $\lambda_1 \leq \lambda < \lambda_2$ and f satisfies assumptions (f_1) - (f_3) . Then I satisfies the $(C)_c$ condition introduced by Cerami in [5], that is, any sequence $\{u_m\} \subset X$ such that $I(u_m) \to c$ and $(1 + \|u_m\|)\|I'(u_m)\|_{X'} \to 0$ possesses a convergent subsequence.

Proof.

1. The boundedness of the $(C)_c$ sequences in X. Let $\{u_m\} \subset X$ be such that $I(u_m) \to c$ and $(1 + ||u_m||)||I'(u_m)||_{X'} \to 0$. Then from (f_2) , (f_3) and (3.3), as $m \to \infty$, one has (3.5)

$$\begin{aligned} pc + o(1) &= pI(u_m) - \langle I'(u_m), u_m \rangle \\ &= \int_{\Omega} |x|^{-bq} (u_m f(u_m) - pF(u_m)) \, dx \\ &= \int_{\Omega} |x|^{-bq} (u_m f(u_m) - \theta F(u_m)) \, dx + (\theta - p) \int_{\Omega} \theta |x|^{-bq} F(u_m) \, dx \\ &\geq -C_1 + (\theta - p)c_3 |u_m|_{L^{\theta}(\Omega, |x|^{-bq})}^{\theta} - C_4 \int_{\Omega} |x|^{-bq} \, dx. \end{aligned}$$

Thus $\theta > p$ implies the boundedness of $\{u_m\}$ in $L^{\theta}(\Omega, |x|^{-bq})$. On the other hand, a simple calculation shows that

$$\theta c + o(1) = \theta I(u_m) - \langle I'(u_m), u_m \rangle
= (\frac{\theta}{p} - 1) ||Du_m||^p_{L^p(\Omega, |x|^{-ap})} - \lambda(\frac{\theta}{p} - 1) \int_{\Omega} |x|^{-(a+1)p+c} |u_m|^p dx
+ \int_{\Omega} |x|^{-bq} (u_m f(u_m) - \theta F(u_m)) dx
\geq (\frac{\theta}{p} - 1) \int_{\Omega} |x|^{-ap} |Du_m|^p dx - C
+ \int_{\Omega(u_m < M)} |x|^{-bq} (u_m f(u_m) - \theta F(u_m)) dx
+ \int_{\Omega(u_m \ge M)} |x|^{-bq} (u_m f(u_m) - \theta F(u_m)) dx
\geq (\frac{\theta}{p} - 1) ||Du_m||^p_{L^p(\Omega, |x|^{-ap})} - C,$$

where C > 0 is a universal constant independent of u_m , which may be different from line to line. Thus $\theta > p$ and (3.6) imply the boundedness of $\{u_m\}$ in X. 2. By (f_1) , f satisfies the subcritical growth condition, by a standard argument, one can obtain that there exists a convergent subsequence of $\{u_m\}$ based on

Theorem 8. Suppose f satisfies assumptions (f_1) - (f_4) , and furthermore, $\theta > ps/(s-1)$ in (f_3) . Then problem (1.1) has a nontrivial weak solution $u \in X$

the boundedness of $\{u_m\}$ in X.

provided that $\lambda_1 \leq \lambda < \lambda_2$.

Proof. It was shown in [3] that the $(C)_c$ condition actually suffices to get a deformation theorem (Theorem 1.3 in [3], and it was also remarked in [8] that

the proofs of the standard Mountain Pass Lemma and saddle-point theorem go through without change once the deformation theorem (Theorem 1.3 in [3] is obtained with the $(C)_c$ condition. Here we verify the assumptions of standard Linking Argument Theorem(cf. [13] Chapter 2, Theorem 8.4) hold with the $(C)_c$ condition replacing the $(PS)_c$ condition.

Since $\partial Q_r \subset Q_r$ and Z_ρ link in X, it suffices to show that

- (1) $\alpha_0 = \sup_{u \in \partial Q_r} I(u) \le 0$, when r > 0 is large enough. (2) $\alpha = \inf_{u \in Z_\rho} I(u) > 0$, when $\rho > 0$ is small enough.

In fact, let $u = te_1 \in \mathcal{E}_1$, from assumption (f_2) , $F(x,s) \geq 0$ for all $s \in \mathbb{R}$ and almost every $x \in \Omega$, thus it holds that

$$I(u) = I(te_1) \le \frac{|t|^p}{p} \int_{\Omega} |x|^{-ap} |De_1|^p dx - \frac{|t|^p \lambda}{p} \int_{\Omega} |x|^{-(a+1)p+c} |e_1|^p dx$$
$$= \frac{|t|^p}{p} (1 - \frac{\lambda}{\lambda_1}) ||e_1|| \le 0.$$

Noticing that

$$|u_m|_{L^{\theta}(\Omega,|x|^{-bq})} = \left(\int_{\Omega} |x|^{-bq} |u|^{\theta}\right)^{1/\theta},$$

is a norm on \mathcal{E}_2 , and that the norms of finite dimensional space are equivalent, it follows that there exists a constant $c_5 > 0$ such that

$$\int_{\Omega} |x|^{-bq} |u|^{\theta} dx \ge c_5 ||u||^{\theta},$$

From (3.3), it holds that

(3.8)
$$I(u) \le \frac{1}{p} ||u||^p - c_3 c_5 ||u||^\theta + c_4 |\Omega|.$$

Since $\theta > p$, it follows

$$I(u) \to -\infty$$
, as $||u|| \to \infty$, $u \in \mathcal{E}_2$,

this implies (1).

From (f_4) and (f_1) , it follows that

$$\int_{\Omega} |x|^{-bq} F(u) \, dx = o(\|u\|^p) \text{ as } u \to 0 \text{ in } X,$$

then for any $u \in \mathbb{Z}$, it holds that

(3.9)
$$I(u) = \frac{1}{p} (1 - \frac{\lambda}{\lambda_2}) \int_{\Omega} |x|^{-ap} |Du|^p dx + o(\|u\|^p).$$

Since $\lambda < \lambda_2$, (3.9) implies (2).

Thus the Linking Argument Theorem (cf. [13] Chapter 2, Theorem 8.4) implies that the value

$$\beta = \inf_{h \in \Gamma} \sup_{u \in Q} E(h(u)) \ge \alpha > 0$$

is critical, where $\Gamma=\{h\in C^0(X;X);\ h|_{\partial Q}=\mathrm{id}\}$. That is, there is a $u\in X,$ such that

$$E'(u) = 0, \ E(u) = \beta > 0.$$

 $E(u) = \beta > 0$ implies $u \not\equiv 0$.

References

- A. Ambrosetti & P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381.
- [2] V. Benci & P. H. Rabinowitz, Critical point theorems for indefinite functional, Invent. Math., 52 (1979), 241–273.
- [3] P. Bartolo, V. Benci & D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Analysis, 7 (1983), 981–1012.
- [4] L. Caffarelli, R. Kohn & L. Nirenberg, First order interpolation inequalities with weights, Compositio Mathematica, 53(1984), 259–275.
- [5] G. Cerami, Un criterio de esistenza per i punti critici su varieta ilimitate, Rc. Ist. Lomb. Sci. Lett., 112 (1978), 332–336.
- [6] K. C. Chang, Critical Point Theory and Applications, Shanghai Science and Technology Press, Shanghai, 1986 (in Chinese).
- K. S. Chou & C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality,
 J. London Math. Soc., 2 (1993), 137–151.
- [8] D. G. Costa & C. A. Magalhaes, Existence results for perturbations of the p-Laplacian, Nonlinear Analysis, TMA, 24 (1995), No.3, 409-418.
- [9] M. Cuesta, Eigenvalue problems for the p-Laplacian with indefinite weights, Electronic Journal of Differential Equations, 2001 (2001), No. 33, 1–9.
- [10] M. Cuesta, On the Fučik spectrum of the Laplacian and p-Laplacian, Proceedings of 2000 Seminar in Differential Equations, Kvilda (Czech Republic), to appear.
- [11] P. Drabek P. & S. Robinson S, Resonance problems for the p-Laplacian, J. of Funct. Anal., 169(1999), 189–200.
- [12] X. L. Fan & Z. C. Li, Linking and existence results for perturbations of the p-Laplacian, Nonli. Anal., 42 (2000), 1413–1420.
- [13] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 2nd ed. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 34, Springer, Berlin-Heidelberg-New York (1996).
- [14] B. J. Xuan, Existence results for a superlinear p-Laplacian equation with indefinite weights, to appear in Nonlinear Analysis, TMA.

- $[15] \ \ B.\ J.\ Xuan,\ The\ eigenvalue\ problem\ of\ a\ singular\ quasilinear\ elliptic\ equation, submitted to\ Applicable\ Analysis,\ July,\ 2003.$
- [16] B. J. Xuan, The solvability of Brezis-Nirenberg type problems of singular quasilinear elliptic equation, submitted to Nonlinear Analysis, TMA, June, 2003.