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RESUMEN  
En este trabajo se presenta el estado del arte del índice mixto de falta de ajuste, propuesto por Rudas Clogg y Lindsay en 
1994. Se discute el análisis de la clase latente no estructurada, considerado como un análisis de residuos de nuevo tipo. Se 
concluye que el mismo resulta idóneo siempre que la falta de ajuste se deba a la existencia de individuos  “sobrantes” , pero 
que no sucede lo mismo en el caso de que en una o varias celdas haya individuos “faltantes”. Por último, se define la 
influencia de una celda en la falta de ajuste de un modelo que puede ser usada como una medida descriptiva 
complementaria en el analisis de residuos usual y en el analisis de las frecuencias de las configuraciones.  
 
ABSTRACT  
In this paper the state of the art of the mixture index of fit, proposed by Rudas, Clogg &Lindsay in 1994 is presented. The 
analysis of the unstructured latent class considered as a residual analysis of a new kind is discussed. It is concluded that it is 
most adequate whenever the lack of fit is due to the existence of “spare” individuals, but it is not the same if there are 
“lacking” individuals in several cells. At last, the influence of a cell on the lack of fit of a model is defined, which can be 
used as a complementary descriptive measure in the usual residual analysis and in the configural frequency analysis. 
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1. INTRODUCTION 
 
Rudas, Clogg & Lindsay (1994) propose an index of fit that constitutes a rather new use of the latent class 
model (see also Rudas, 1998 and Rudas 2002). This index is general, easy to interpret and does not have the 
limitations of usual procedures related with sample size. 
 
Let H be a model proposed for a contingency table { }yPP = , where y runs over all possible response 

patterns. Let )2( == XPπ and −1 )1( == XPπ  be a latent class distribution for a 2-class model. The 

following family of saturated models πH , with two latent classes, is defined, 

yyy RQP ππ +−= )1(  

where ),1/(),( ===== XyYPQyYPP yy  and )2/( === XyYPRy  have the following 
characteristics: 

• Model H is valid in the first latent class Q 
• There is no assumption concerning the second latent class R. 

 
The formulation without restriction for the second component can be considered as a representation of the 
un-modelled heterogeneity, the variation not described by model H.  
 
The Family πH  is very general, it contains model H (for 0=π ) up to the saturated one (when 1=π .) 
The classical latent class model is a particular case where the independence model H is valid in both latent 
classes. Goodman’s model (1975) and the extended models of Dayton & Macready (1980) are included. In 
these cases, H is a linear scaling model. 
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The family of models πH  has the monotony property, i. e.: 

If 'ππ <  then 'ππ HH ⊂ . 
 

 Rudas, Clogg & Lindsay’s mixture index of fit (RCL) is defined, on the basis of this property, as the 
minimal value of π , ∗=ππ , for which πH  is saturated. 
 
The ∗π  value is interpreted as the proportion of the population intrinsically not described by H. The lack of 
fit of H is concentrated on R. Complementarily, ∗− π1  is also an index of fit: it is the proportion of the 
population intrinsically described by H. 
 
2. 2 × 2 CONTINGENCY TABLE 
 
An explicit formula for  ∗π  can be obtained for the case of two cross-classified dichotomic variables. 
Table 1 represents the observed frequencies. 
 
Rows/Columns Column 1 Column 2 Total 

Row 1 A B A+B 
Row 2 C D C+D 
Total A+C B+D n 

Table 1. Observed frequencies in a 2x2 table. 
 

Let us suppose 0>BCAD , and DA > ; the perfect value corresponding to cell (2,2) is: 

A
BCx = , 

 the decomposition into two latent classes has the following form: 
 . 

Finally, 

nA
BCAD −

=*π  . 

It can be seen that the value of the index agrees exactly with one of the differences between the observed 
value and the value of the perfect cell (expressed as proportion of the whole sample). 
 
Note that if DA= , although *π  remains unchanged, two equivalent decompositions of the original table 
can be obtained depending on the cell being assigned the perfect value. 
 
3. TWO-WAY CONTINGENCY TABLE 
 
Rudas et al. (1994) use as example in their paper the case of the two-way contingency table and the model 
of independence. The results of the analysis of one of the examples used by those authors are presented, as 
a way of illustrating their ideas.  
 
 

Eyes/Hair Black Brown Red Blond 
Brown 68 119 26 7 
Blue 20 84 17 94 
Gray 15 54 14 10 
Green 5 29 14 16 

Table 2. Tabla 1, page 625, Rudas et al. (1994) 
 
It handles with cross-tabulation of eye and hair colors for a sample of 592 individuals. The data appear in 
table 2. 
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The lack of fit estimation for the independence model for this example is 2958.0ˆ * =π . This means that 
approximately 30% of the population does not follow the independence model. 
Rudas et al. (1994) propose an EM algorithm for the estimation of parameter *π . Moreover, they gave a 
lower confidence limit, *

Lπ , based on a likelihood ratio statistic 2L , and equal to 2.70 (the 90th percentile of 
the chi-square distribution with 1 degree of freedom.) The confidence interval is only lower bounded 
because by definition of  *π model πH is saturated for every value *ππ > . 
 
4. RECENT DEVELOPMENTS 
 
The aforementioned paper left some questions unanswered and they motivated ulterior investigations. It 
was still to be answered, to know: 

1. A measure of precision for the estimator *π̂  
2. The study of  effect of sample zeros 
3. The extension of the method to more complex models 
4. The investigation of the possibilities and limitations of the analysis of the unstructured latent class. 

With respect to the measure of precision for the estimator *π̂ , Rudas et al. (1994) and Clogg, Rudas & Xi 
(1995) proposed the difference ** ˆˆ ππ −L . Dayton (1999) proposed the estimation of the standard error of 

*π̂  by the Jackknife procedure. 
 
With respect to the sample zeros the two usual alternatives have been explored: (1) to add a small positive 
constant to each cell, and (2) to consider the sample zeros as structural zeros. 
 
Rudas & Zwick (1997) used the first variant. They compared the results obtained when adding different 
values and they conclude that for sparse tables it is recommendable to smooth the observed distribution by 
adding .1.0=ε  Rudas (2002) recommends the same analysis for being sure that the results do not depend 
on the used value. 
 
Formann (2000) used the second variant and he finds it satisfactory, even more, based on this solution he 
recommends this method as the best for the case of sparse tables. 
 
With respect to the extension of the method to more complex models Clogg (1995) and Clogg, Rudas & Xi 
(1995) used this approach for the analysis of the structure in mobility tables. González (1998) uses the row-
column association model and compares its goodness of fit with that of the independence model. Dayton 
(2003) applies the RCL index to the latent class and the Rasch models.  
 
González & Méndez (2000) propose the use of the index as a new concept of type in the configural 
frequency analysis for two samples. Von Eye (2001) included this descriptive measure in this program 
CONFIGURAL FREQUENCY ANALYSIS, version 2000. 
 
Xi & Lindsay (1996) propose a new computing method for the RCL index by using sequential quadratic 
programming (SQP.) The advantages are (1) it has a higher convergence rate than the EM algorithm; (2) it 
is more general in the sense that it can be applied to any loglinear model, and (3) it does not explicitly 
require the maximum likelihood estimations of the parameters within each class. 
 
Dayton (1999) includes the RCL index in the chapter “Determination of fit of a model to the data” and he 
presents the implementation of SQP algorithm in Excel. With this procedure he measures the fit of different 
models such as: the CLCM with two latent class and some scaling models. Moreover, he gives a practical 
rule for interpreting the *π value (less than 10% of lack of fit is a reasonable fit.) 
 
At last, Formann (2000) defines the generalized RCL index where the number of components representing 
model H can be more than one. 
 
This index of fit is rather new, but it can be seen that there is an increase in its diffusion and new 
application in different contexts. 
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5. ANALYSIS OF THE UNSTRUCTURED LATENT CLASS 
 
With respect to the second latent class, Clogg et al. (1995) used this approach for quantifying the structure 
in mobility tables. According to them, for a basal model (independence, quasi-independence,  and uniform 
association) the RCL index can be interpreted as the amount of structure contained in the data and that is 
out of the basal model. This structure accumulates in R and its study constitutes a residual analysis of a new 
kind. Clogg, Rudas & Matthews (1997) propose the use of simple graphs to visualize the second latent class 
and to study the unmodelled structure. 
 
In González & Méndez (2001) this new approach is compared to the usual residual analysis. A conclusion 
in their paper is that the analysis of the non-structured latent class is one more tool to study the causes of 
the lack of fit of a model and to detect possible atypical cells. In this sense, the analysis of the unstructured 
latent class, could be seen as a residual analysis of a new kind, it could be used as a complement of the 
standardized residual analysis, the analysis of eliminated residuals and the variation of the likelihood ratio 
statistic.  
 
The frequency estimations for latent classes 1 and 2, respectively, for the example of hair and eye color 
cross-classification are shown in Tables 3 and 4. It has already been mentioned that 30% of the population 
does not follow the independence ( 2958.0ˆ * =π .) 
 

EYES/HAIR Black Brown Red Blond 
Brown 28.35 119 24.09 7 
Blue 20 84 17 4.95 
Gray 12.86 54 10.94 3.17 
Green 5 21.01 4.26 0.36 

Table 3. First latent class (follows the model of independence) 
 

EYES/HAIR Black Brown Red Blond 
Brown 39.65 0 1.91 0 
Blue 0 0 0 89.05 
Gray 2.14 0 3.06 6.83 
Green 0 7.99 9.74 15.64 

Table 4. Second latent class (non structured) 
 
Note that all cells in the first latent class are perfect and the second class contains the “spare” individuals. 
The majority of them are grouped in cells (1,1) and (2,4) and both together have 73.5% of individuals in the 
unstructured latent class. According with this, both variables are dependent because there is an excess of 
individuals with brown eyes and black hair, as well as blue-eyed with blond hair. 
 
Several presentations could be used to analyze the unstructured latent class. In Table 4 the raw data were 
presented. It is also possible to use: (1) the percentages with respect to the amount of individuals in the 
analysis, (2) the percentages with respect to the amount of individuals in the latent class, and (3) the 
percentages with respect to the amount of individuals in each cell (see Clogg et al., 1997; González and 
Méndez, 2001.) 
 
The analysis of the unstructured latent class, in its nature, could be seen as a residual analysis of a new 
kind. It is most adequate whenever the lack of fit is due to the existence of “spare” individuals as in the 
analyzed example. Nevertheless, in the case of one or several cells with “lacking” subjects this analysis is 
not so evident (González, 1999). In what follows, it is presented a new result for solving this difficulty. 
 
6. INFLUENCE OF A CELL ON THE LACK OF FIT OF A MODEL  
 
Let H be a proposed model for a contingency table P. Let *π  be the index of fit of model H, and let *

yπ  
that of model H considering cell y as a structural zero. The influence of a cell y on the lack of fit of a model 
H is defined as follows: 

*

**

π
ππ y

yILF
−

= . 

It is interpreted as the relative reduction of the lack of fit for model H when cell y is ignored. 
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Table 5 shows the index of fit of the quasi-independence model for each cell in the contingency table under 
analysis, and Table 6 shows the influence of each cell on the lack of fit (percentages.) 
 
Note that cell (1,4) containing the individuals with brown eyes and blond hair is also noteworthy. This cell 
has a zero in the unstructured latent class (see Table 4.) To the analysis already accomplished, it could be 
added that the low quantity of subjects with brown eyes and blond hair also contributes to the lack of fit of 
the independence model. 
 

EYES/HAIR black brown Red Blond 
Brown 0.2270 0.2899 0.2926 0.2351 
Blue 0.2906 0.289 0.2909 0.1454 
Gray 0.2925 0.2884 0.2906 0.2843 
Green 0.2788 0.2823 0.2793 0.2709 

Table 5. Lack of fit index for the quasi-independence model 
 

EYES/HAIR Black Brown Red Blond 
Brown 23.26 1.99 1.08 20.52 
Blue 1.76 2.30 1.66 50.85 
Gray 1.12 2.50 1.76 3.89 
Green 5.75 4.56 5.58 8.42 

Table 6. Influence of each cell on the lack of fit 
 
Victor (1989) and Kieser & Victor (1991) develop an alternative approach to the standard configural 
frequency analysis. They say it is not appropriate to estimate the expected values of the whole contingency 
table by using the information of the cells under analysis, because it is supposed that they do not come from 
the same population. These authors propose to consider the cells constituting possible types or antitypes as 
structural zeros. Kieser & Victor (1999) formulate this new approach in terms of the loglinear model and 
they propose methods to carry out the exploratory as well the confirmatory analysis. 
 
The definition of the influence of a cell proposed in this paper is akin to Kieser & Victor’s approach. It is 
natural to consider this measure as complement of the analysis proposed by these authors. 
 
7. CONCLUSIONS 
 
The mixture index of fit proposed by Rudas, Clogg & Lindsay in 1994 is a descriptive measure easy to 
interpret and with the possibility of a general use. It is not intended to be a substitute for the other known 
measures, but to use it as their complement. In the last 10 years, it has experienced a continuous advance in 
the computational aspects as well as in the variety of applications. 
 
The analysis of the unstructured latent class, in its nature, could be seen as a residual analysis of a new 
kind. It is best used whenever the lack of fit is due to the existence of “spare” subjects as is the case in the 
analyzed example. Nevertheless, in the case of one or several cells with “lacking” subjects this analysis is 
not so evident. 
 
The definition of influence of a cell on the lack of fit of a model proposed in this paper can be used as a 
complementary descriptive measure in the usual residual analysis and in the configural frequency analysis.  
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