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ABSTRACT 

Let X be a normally distributed with unknown mean µ  and variance 
2σ . Assume that a prior estimate 0µ  of µ  is available. Two 

Thompson type shrinkage estimators of estimating µ  that incorporates prior estimate 0µ  are proposed. These estimators are shown to 

have a smaller mean squared error in a region around 0µ  in comparison to existing estimators. The expressions for the bias and mean 

squared error of the proposed t-estimators are obtained. Numerical results are provided when the proposed estimators are t-estimators of 
level of significance α . Comparisons with the earlier known results show the usefulness of the testimators.  
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RESUMEN 

Sea X una variable distribuida normalmente con media  µ  y varianza 
2σ  desconocidas. Asuma que un estimado a priori 0µ  de µ  

está disponible. Se proponen dos tipos de estimadores del tipo Thompson de encogimiento (shrinkage) para estimar µ  que  incorporan el 

estimado a priori. Se demuestra que estos estimadores poseen menos error cuadrático medio en la región alrededor de 0µ  en 

comparación con  estimadores existentes. Las expresiones para el sesgo y el error cuadrático medio de los t-estimadores son  obtenidos. 
Resultados numéricos son  presentados cuando los estimadores propuestos son  t-estimadores de nivel de significación. Comparaciones 
con previos resultados conocidos demuestran la utilidad de los  t-estimadores.  

 
 
1 INTRODUCTION 

 
1.1 The model 
 
The normal distribution is the most widely used distribution in statistics and many other sciences. To be specific, in 
modeling the normal curve is an excellent approximation to the frequency distributions of observations taken on a 
variety of variables and as a limiting form of various other distributions (see Davison, 2003). Examples of random 
variables that have been modeled successfully by the normal distributions are the height and weight of people, 
diameters of bolts produced by a machine, the IQ of people, the life of electronic products, and so on.  
 

Let nxxx ,...,, 21  be a random sample of size n  from the following normal distribution 

 

,0,,};2/)(exp{)2/1(),|( 2222 >∞<<∞−∞<<∞−−−= σµσµπσσµ xxxf  (1) 

 

where µ  being the mean (unknown) and 2σ is the variance.  

 
1.2 Estimating the mean incorporating a guess 
 
In many problems, the experimenter has some prior guess value regarding the value of µ  either due to past 

experiences or to his familiarity with the behavior of the population under study. However, in certain situations the 
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prior information is available only in the form of an initial guess value (natural origin) 0µ  of µ . According to 

Thompson (1968 a) such guess value may arise for any one of a number of reasons, e.g., we are estimating µ  and: 

i) we believe 0µ  is close to the true value of µ ; or 

ii) we fear that 0µ  may be near the true value of µ , i.e., something bad happens if 0µ = µ , and we do not 

know about it. 
 
For such cases, this guess value may be utilized to improve the estimation procedure. For the philosophy and history of 
shrinkage estimator and its importance see Casella (2002) and Lemmer (2006). 
 
1.3 Background 
 

A standard problem in estimation of the unknown parameter µ  when some guess is available in the form of 0µ , is to 

get an estimator with minimum mean square error or maximum relative efficiency. The commonly used approaches in 
statistical inference which utilize the prior guess value are the shrunken methods. The problem of estimating the mean 

µ  when 0µ  is available was first discussed by Thompson (1968 a) where he developed single stage shrunken 

estimators for parameters of normal, binomial, Poisson and gamma distributions. Following this several authors have 
tried to develop new single stage shrunken estimators by using Thompson type shrinkage weight factors and also 
proposing new shrinkage weight factors. A general single stage shrunken estimator for the mean µ is defined as 

follows: (i) Compute the sample mean X  based on n  observations; (ii) Construct a preliminary test region (R ) in the 

space ofµ , based on 0µ  and an appropriate criterion. If RX ∈ , shrink X  towards 0µ  by shrinkage factor 

10 ≤≤ k  and use the estimator 00 )( µµ +−Xk  for µ . But if X R∉ , take X  as an estimator of µ . 

Thus a single stage shrinkage estimator of µ  using the prior estimate 0µ  is given by: 

 

{[=µ 00 )( µµ +−Xk ] RI +[ X ]
R

I },      (2) 

 

where RI  and 
R

I  are respectively the indicator functions of the acceptance region R  and the rejection region R . The 

single stage shrunken estimator µ  is completely specified if the shrinkage weight factor k  and the region R  are 

specified. Consequently, the success of µ  depends upon the proper choice of k  and R . Several authors have studied 

estimators of the form µ  by choosing different k  and R  [see Thompson (1968 a, b), Davis and Arnold (1970), 

Mehta and Srinivasan (1971), Hirano (1977), Kambo, Handa and Al-Hemyari (1992)]. 
 
2. THE PROPOSED ESTIMATORS 
 

In this paper we proposed two single stage shrunken estimators for the mean µ  when 2σ  is known or unknown 

denoted by 2,1,~ =iiµ , which are a modifications of µ  defined in (2). The proposed estimator takes the general 

form: 
 

{[~ =µ 00 )( µµ +−Xk ] RI + [ ]]))(1[( 00 µµ +−− Xk
R

I }   (3) 

 
The main distinguishing feature of this type of single stage estimator from conventional two stage shrinkage testimators 

is that, the pretest region rejects the prior estimate 0µ  only partially and even if RX ∉ , 0µ  is given some 

weightage though small in estimation of second stage. The expressions for the bias, mean squared error, and relative 

efficiency of µ~  for the both cases when 2σ  known or unknown are derived and studied theoretically and numerically. 

Some properties of µ~  are studied. Conclusions regarding the constants involved in the proposed estimators are 

presented. Comparisons with the earlier known results are made. It may be noted here that Kambo, Handa and Al-
Hemyari (1990) studied estimator (2) for exponential distribution. 
 

2.1 Estimator with known 2σ  
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In this section first we define the estimator when 2σ  is known. The bias, mean squared error, and relative efficiency 

expressions of the proposed testimator are derived. A suitable choice of k   is obtained, and finally some properties are 
also discussed. 

Let X be normally distributed with unknown µ  and known variance 2σ , assume that a prior estimate 0µ  about µ  is 

available from the past. The first proposed testimator is:  
 

[ ] [ ]{ }
11 0010011 ))(1()(~

RR IXkIXk µµµµµ +−−++−= .   (4) 

 

1R  is taking as the pretest region of size α  for testing 00 : µµ =H  against 01 : µµ ≠H , where   

   ],,[ 2/02/01
n

z
n

zR
σµσµ αα +−=                   (5) 

2/αz  is the upper )2(100α th percentile point of the standard normal distribution. 

 

The bias of 1
~µ  is given by:  

 

[ ] [ ] ,),())(1(),()(

)~(),~(

2
01

2
001

111

11

µσµµσµµµ

µµµµ

−−−++−=

−=

∫∫
∈∈

XdXfXkXdXfXk

ERB

RXRX

     (6) 

 

where ( )2,σµXf  is the pdf of X  and 1R  is the complement of .1R  

 
Define 

...,2,1,0,)2exp(
2

1
),( 2 =−= ∫ idZZZbaJ

b

a

i
i π

,    (7) 

where σµ)( 11 −= XnZ . 

 

The expression of ),~( 11 RB µµ  after simplifications yields 

 

{ }1110111111 )],(),()[12()(),~( λλσµµ kbaJbaJknRB +−−= ,  (8) 

 

where σµµλ )( 01 −= n , 211 αλ za −=  and 211 αλ zb += . 

 

The mean squared error of 1
~µ  is given by  

 

{ }22
1

2
110

2
1112

22
111 )1()],(),()[12()()~(),~( kkbaJbaJknERMSE −++−−=−= λλσµµµµ .              (9) 

For numerical computations we may use the relations 
 

( ) π2)2exp()2exp(),( 22
1 babaJ −−−= ,     (10) 

 
and 

 

( ) π2)2exp()2exp(),(),( 22
02 babaJbaJ −−−+= .   (11) 

 

If 0µµ = , then expression of bias and MSE of 1
~µ  respectively simplify to 

 

0),~( 101 =RB µµ ,      (12) 
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and 
 

{ }2*
1

*
12

2
101 )1(),()12()(),~( kbaJknRMSE −+−= σµµ ,   (13) 

 

where 2
*
1 αza −=  and 2

*
1 αzb += . 

 
Remark 1: Local minima choice of k 
 
When the region R  does not depend on k a choice (local minima) for k is given below: 

Select k that minimizes ),~( 01 RMSE µµ . From (13) we have 

 

{ })1(2),(2()(),~( *
1

*
12

2
01 kbaJnRMSE

k
−−=

∂
∂ σµµ . 

 

Now 0),~( 01 =
∂
∂

RMSE
k

µµ  gives critical value of k as 

 

)(

),()(

1),(1

22
0

*
1

*
121 XMSE

XdXfX

baJk

b

a
∫ −

−=−=
σµµ

.    (14) 

 

Clearly ,0),~( 012

2

>
∂
∂

RMSE
k

µµ 1k  is not a function of unknown parameter µ  and 10 1 ≤≤ k . 

It is easy to show that ),~( 11 RB µµ  is an odd function of λ  and ),~( 11 RMSE µµ  is an even function of λ . 

Moreover 0),~( 1 =
∞→

RBLim
n

µµ  and 0),~( 1 =
∞→

RMSELim
n

µµ . This shows that 1
~µ  is also a consistent estimator. 

 

2.2 Estimator with unknown 2σ  
 

When 2σ is unknown, it is estimated by ∑
=

−−=
1

1

22 )1/()(
n

i
i nXXs . Again taking region 2R  as the pretest region 

of size α  for testing 00 : µµ =H  against 01 : µµ ≠H  in the testimator 1
~µ  defined in equation (4) and denoting 

the resulting estimator as 2
~µ . The estimator 2

~µ  is given by: 

 

[ ] [ ]{ }
22 0020022 ))(1()(~

RR IXkIXk µµµµµ +−−++−= .   (15) 

 

The testimator 2
~µ  employs the interval 2R  given by: 

 








 +−= −−
n

s
t

n

s
tR nn 1,201,202 , αα µµ ,     (16) 

 

and 1,2 −ntα  is the upper th)2(100α  percentile point of the t-distribution with )1( −n  degrees of freedom.  

 

The expression for the bias of 2
~µ  can be written as  
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[ ]
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0

2222
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∫
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∞

∈
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where )( 22 σsf  is the pdf of 2s . The simplification of the expression of the bias leads to 

 









+−−= ∫
∞

2

0

220222122 )()],(),([)12()(),~( λλσµµ kdyyfbaJbaJknRB . (18) 

 
Using the above simplifications, the expression for the mean squared error is given by 

 









−++−−= ∫
∞

22
2

2

0

220
2
2222

2
22 )1()()],(),([)12()(),~( kkdyyfbaJbaJknRMSE λλσµµ , (19) 

 

where ,)( 02 sn µµλ −=  )1(1,222 −−= − nyta nαλ , )1(1,222 −+= − nytb nαλ and y is a random 

variable with a chi-square disribution with )1( −n  degrees of freedom. 

In particular when 0µµ =  we have after some simple simplifications, 

 

0),~( 02 =RB µµ ,       (20) 

 
and  

 

[ ]
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Remark 2: 
 

Using the same method of Remark 1 the critical value of k (local minima) when 2σ  is unknown is given by 
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   (22) 

 

Also 2k  is free from the function of unknown parameters µ  and 2σ  and also 10 2 ≤≤ k . 

 
4. NUMERICAL RESULTS AND CONCLUSIONS 
 

The bias ratio ( ))(),~( nRB iii σµµ , mean squared error and relative efficiency of the proposed estimators 1
~µ  

and 2
~µ  i.e., ),~()(),~( 1111 RMSEXMSERXRE µµµ =  and ),~()(),~( 2222 RMSEXMSERXRE µµµ =  
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were computed for different values of constants involved in these estimators. The following conclusions are based on 
these computations: 
 

Table 1: Relative efficiency ),~( 11 RXRE µ  and )(),~( 11 nRB σµµ of proposed estimator 1
~µ  for different 

values of α  and 1λ  

 
 

 
1λ  

α  0.0 0.1 0.2 0.3 0.4 0.5 0.6 
0.002 44.843 

(0.0) 
30.797 
(0.095) 

16.203 
0.183) 

9.382 
(0.261) 

6.161 
(0.325) 

4.467 
(0.375) 

3.489 
(0.410) 

0.01 13.042 
(0.0) 

11.587 
(0.084) 

8.787 
(0.162) 

6.342 
(0.230) 

4.849 
(0.287) 

3.934 
(0.330) 

3.176 
(0.363) 

0.05 4.971 
(0.0) 

4.831 
(0.059) 

4.474 
(0.116) 

4.030 
(0.169) 

3.603 
(0.216) 

3.238 
(0.260) 

2.942 
(0.301) 

0.1 4.060 
(0.0) 

4.009 
(0.051) 

3.810 
(0.101) 

3.673 
(0.150) 

3.451 
(0.200) 

3.224 
(0.249) 

3.001 
(0.299) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

(i) For the estimator 1
~µ , numerical computations were performed by taking the pretest region 








 +−=
n

Z
n

ZR
σµσµ αα 2020 ,  which is the acceptance region of size α  for testing the hypothesis 

00 : µµ =H  against 01 : µµ ≠H , 15.0,1.0,05.0,01.0,02.0=α  and .0.2)1.0(0.0=λ  In Table 1 some 

sample values of the efficiency of 1
~µ  relative to X , and that of ),~()( 1 RBn µµσ  shown in brackets are given 

for some selected values of α  and λ . It is evident from the computations that generally ),~( 1 REff µµ  increases as 

α  decreases. Also as λ  increases, the efficiency decreases. It may be remarked that Hirano (1977) recommended 

using 15.0=α . The results of Table 1 compare favorably with the classical estimator. The bias ratio is minimum 

when 0µµ =  and increases with increases in λ . 

(ii) For the estimator 2
~µ , numerical computations were performed by taking the pretest region 








 +−= −−
n

s
t

n

s
tR nn 1,201,202 , αα µµ  which is the acceptance region of size α  for testing the hypothesis 

00 : µµ =H  against 01 : µµ ≠H  when 2σ  is unknown, 15.0,1.0,05.0,01.0,02.0=α , 0.2)1.0(0.0=λ  

and 12,10,8,6=n . Some of the computations are given in Table 2. 

(iii) The relative efficiency of 2
~µ  is a decreasing function of n  for 0.20 ≤≤ λ . The general behavioral 

pattern of estimator 2
~µ  is similar to that of 1

~µ  as the bias ratio and relative efficiency are concerned. 

(iv) It is observed that our estimators 1
~µ  and 2

~µ  are better in terms of higher relative efficiency when 

0=iλ  and 0≠iλ  than the classical and existing shrinkage estimators. 

 
1λ  

α  0.7 0.8 0.9 1.0 1.5 2.0 
0.002 2.881 

(0.434) 
2.483 
(0.448) 

2.210 
(0.455) 

2.018 
(0.459) 

1.597 
(0.499) 

1.113 
(0.733) 

0.01 2.739 
(0.387) 

2.440 
(0.406) 

2.228 
(0.422) 

2.069 
(0.440) 

1.502 
(0.615) 

0.905 
(0.966) 

0.05 2.701 
(0.342) 

2.498 
(0.384) 

2.315 
(0.429) 

2.141 
(0.479) 

1.306 
(0.772) 

0.861 
(0.989) 

0.1 2.781 
(0.351) 

2.561 
(0.405) 

2.341 
(0.461) 

2.123 
(0.518) 

1.240 
(0.811 

0.840 
(0.857) 
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Table 2: Relative efficiency ),~( 22 RXRE µ  and )(),~( 2 nRB σµµ of proposed estimator 2
~µ  for different 

values of 2λ , n  and α  

 
 

  
2λ  

α  n  0.0 0.1 0.5 1.0 1.5 1.75 2.0 
6 92.571 

(0.0) 
47.289 
(0.024) 

4.798 
(0.123) 

2.007 
(0.371) 

1.462 
(0.452) 

1.335 
(0.512) 

1.201 
(0.652) 

8 77.503 
(0.0) 

42.529 
(0.026) 

4.740 
(0.145) 

2.007 
(0.395) 

1.453 
(0.487) 

1.330 
(0.552) 

1.191 
(0.667) 

 
 
0.002 

10 69.498 
(0.0) 

36.503 
(0.028) 

4.4668 
(0.147) 

2.003 
(0.411) 

1.444 
(0.531) 

1.382 
(0.566) 

1.183 
(0.676) 

6 21.113 
(0.0) 

17.466 
(0.024) 

4.297 
(0.144) 

2.007 
(0.377) 

1.449 
(0.466) 

1.252 
(0.531) 

1.005 
(0.662) 

8 18.547 
(0.0) 

15.795 
(0.027) 

4.190 
(0.158) 

2.007 
(0.399) 

1.452 
(0.493) 

1.245 
(0.576) 

1.025 
(0.672) 

 
 
0.01 
 
 10 17.196 

(0.0) 
14.679 
(0.032) 

4.116 
(0.155) 

2.002 
(0.451) 

1.441 
(0.552) 

1.238 
(0.583) 

1.000 
(0.699) 

6 4.355 
(0.0) 

4.277 
(0.025) 

3.207 
(0.154) 

2.005 
(0.382) 

1.265 
(0.472) 

0.990 
(0.552) 

0.808 
(0.677) 

8 4.251 
(0.0) 

4.179 
(0.031) 

3.201 
(0.156) 

2.005 
(0.413) 

1.258 
(0.478) 

0.986 
(0.579) 

0.807 
(0.692) 

 
 
0.1 

10 4.198 
(0.0) 

4.124 
(0.041) 

3.201 
(0.158) 

2.002 
(0.466) 

1.254 
(0.482) 

0.985 
(0.611) 

0.802 
(0.715) 
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