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A NUMERICAL EXPERIMENT WITH HUANG
ALGORITHM
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Abstract. It is believed that the Huang method is the best one to solve a

system of linear equations in the class of ABS methods. Having presented

10 versions of the Huang method and compared them numerically, we will

compare the best version of the Huang method with LU (along with par-

tial pivoting) and QR (through Householder transformations) methods.

Numerical results show that all three methods yield approximately sim-

ilar output in well-conditioned problems while the Huang method works

more effectively in ill-conditioned problems.
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Resumen. Se cree que el método Huang es el mejor de los métodos ABS

para resolver un sistema de ecuaciones lineales. Habiendo presentado

10 versiones del método Huang y evaluándolas numéricamente, compara-

remos la mejor versión del método Huang con los métodos LU (a través de

pivotaje parcial) y QR (por medio de transformaciones de Householder).

Las pruebas numéricas muestran que los tres métodos producen resulta-

dos similares en problemas bien condicionados, mientras que el método

Huang trabaja más efectivamente en problemas mal condicionados.

Palabras claves. Métodos ABS, Algoritmo Huang , sistemas mal condi-

cionados.
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1. Introduction

In many numerical methods for mathematical programming problems, it is
often required to solve a system of linear equations which is usually consistent
and, therefore, solvable. However, the exact nature of the system is not known
a priori. The system may be determined and admits a unique solution or it
may be underdetermined and admits infinite solutions. In either case, the sys-
tem may contain some redundant equations. Therefore, it is highly desirable
to develop a program which can be employed for all cases. Such a program has
to perform the following functions: (a) determining whether the system is con-
sistent or not, if the consistency of the equations is not assured beforehand; (b)
determining the rank of the system and selecting a set of linearly independent
equations that represents the original consistent system; and (c) determining
the unique solution if the system is determined or determining a particular
solution and some additional data, so that an expression can be formed for the
general solution, if the system is underdetermined.

Consider the system of linear equations

(1) aT
i x = bi, i = 1, 2, . . . ,m,

where ai ∈ Rn and m ≤ n. Let A = (a1, . . . , am)T ∈ Rm×n and b =
(b1, . . . , bm)T ∈ Rm. Thus, we can write the system (1) in the form of

(2) Ax = b.

For the general solution of a consistent system such as that in (2), a conve-
nient expression can be obtained by making use of the generalized inverse of
the matrix A. The generalized inverse of A is the n×m matrix A+ determined
uniquely by [6]

AA+A = A, A+AA+ = A+, (AA+)T = AA+, (A+A)T = A+A.

It is proved that A+T = AT+ and rank(A+) = rank(A). The system (2) is
consistent if and only if

(3) AA+b = b.

In this case, the general solution of the system can be expressed by

(4) x = x∗ +Hy,
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where y is an arbitrary vector, x∗ is the minimum modulus solution, and H is
an n× n symmetric matrix. The x∗ and H are given by the following

(5) x∗ = A+b, H = I −A+A.

The matrix H is the symmetric projection matrix, which takes any vector y
into the null space of the matrix A. Its rank is n − r, where r = rank(A).
When r = n, H reduces to zero and x∗ becomes the unique solution of the
system.

Therefore, a program fulfilling (a)-(c) can be established by computing the
generalized inverse. There are several methods available towards this end [6].
However, it is worth noting that all of these methods depend critically on the
correct choice of the numerical rank, that is, the rank of A as determined
by a particular numerical method. Erroneous results are obtained when one
uses a numerical rank greater than the theoretical rank of A or when one
uses a numerical rank less than but too close to the theoretical rank of an
ill-conditioned matrix A.

Another approach can be used to obtain the general solution (4). In this
approach, we select first r linearly independent rows of the matrix A. Let this
matrix be denoted by A, and the corresponding component of the vector b by b.
Then, we consider the equation Āx = b̄, where Ā is r×n and b̄ is r×1. For this
matrix Ā, ĀĀT is nonsingular and its inverse (ĀĀT )−1 exists. Furthermore,

(6) Ā+ = ĀT (ĀĀT )−1.

Substituting (6) into (5), we obtain

(7) x∗ = ĀT (ĀĀT )−1b̄, H = I − ĀT (ĀĀT )−1Ā.

Once x∗ is obtained, it is substituted into the remaining equations of the orig-
inal system. If they are satisfied, the system is consistent and the general
solution is given by (4) and (7). If any of them is violated, the system is incon-
sistent and has no solution. This approach is conceptually simple. However,
as in the previous case, the determination of the rank is a subtle task. Besides,
the matrix ĀĀT may be ill-conditioned and its inverse becomes very inaccurate
if the rows of the matrix Ā are nearly linearly dependent.
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In this paper, a class of direct methods, called ABS class (standing for
Abaffy, Broyden and Spedicato methods), is present which has all (a)-(c) prop-
erties concerning a general linear system of equations. Section 2 recalls the class
of ABS methods and provides some of its properties. In Section 3, Huang algo-
rithm [5,2] in ABS class and some of its other properties have been presented.
This algorithm is an implicit LQ decomposition type method, and, in exact
arithmetic, is equivalent to the Gram-Schmidt orthogonalization procedure.
Furthermore, in this section, 10 versions of Huang algorithm are presented. In
Section 4, the above versions are numerically compared and the best one (in
our set of test problems) is selected. Then, a numerical experiment is given
among the best version of Huang algorithm (version 7), QR method (using
Householder transformations), and LU algorithm (with partial pivoting). Nu-
merical results show that all 3 methods gives almost the same results, while for
ill-conditioned systems, version 7 of Huang algorithm gives the best ones.

2. ABS Methods and Some of Its Properties

In this section, ABS method is introduced. ABS method is a class of meth-
ods of direct type for solving a system of m linear equations in n variables, full
rank or deficient rank, determined or underdetermined; whenever the solution
is not unique, by solving we intend that a particular solution is computed and
a representation is given of the linear variety containing all the solutions. It
has some selective parameters, so every particular choice results in a particular
method. Indeed, it is shown [2] that all available methods of direct type for solv-
ing a linear system can be put in ABS class. In particular, ABS class implicitly
includes LU, LLT , QR decompositions, and conjugate directions methods.

Consider the linear system (2). ABS algorithm is a finite procedure based
upon taking m steps along m search vectors, constructed using a certain de-
flection matrix. The process is made up of the following steps:

[1 ] Let x1 be an arbitrary vector in Rn and H1 an arbitrary n by n

nonsingular matrix. Set i = 1 and ri = 0.
[2 ] Compute the vector si = Hiai, and the scalar ti = aT

i xi − bi.
[3 ] If (si = 0 and ti = 0), then let xi+1 = xi, Hi+1 = Hi, ri+1 = ri and

go to step (7) (the ith equation is redundant). If (si = 0 and ti 6= 0),
then Stop (the ith equation and hence the system is incompatible).
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[4 ] {si 6= 0} Compute the search direction pi = HT
i zi, where zi ∈ Rn is

an arbitrary vector satisfying zT
i si 6= 0. Compute

αi =
ti
aT

i pi

and take

(8) xi+1 = xi − αipi.

[5 ] {Updating Hi} Update Hi to Hi+1 by

(9) Hi+1 = Hi −
Hiaiw

T
i Hi

wT
i Hiai

,

where wi ∈ Rn is an arbitrary vector satisfying wT
i si 6= 0.

[6 ] Let ri+1 = ri + 1.
[7 ] If i = m then Stop (xm+1 is a solution) else let i = i + 1 and go to

step (2).

Remark 2.1.

• If si = 0 and ti = 0, then the ith equation is redundant.
• If si = 0 and ti 6= 0, then the ith equation and hence the system is

incompatible.
• In the above algorithm, ri+1 denotes the rank of Ai = (a1, . . . , ai).
• If the system (2) is compatible, then the general solution is given by

x = xm+1 +HT
m+1q,

where q ∈ Rn is arbitrary.

In what follows, we list certain properties of ABS methods [2,1]. For sim-
plicity, it is assumed that rank(A) = m.

• The vectors Hiaj , i ≤ j, are linearly independent.
• For i < j, we have Hiaj = 0. Therefore, Range(Ai−1) = Null(Hi).
• Hiai 6= 0 if and only if ai is linearly independent of a1, . . . , ai−1.
• rank(Hi) = n− i+ 1. If Hiai 6= 0, then rank(Hi+1) = rank(Hi)− 1.
• Every row of Hi corresponding to a nonzero component of wi is linearly

dependent on other rows.



6 H. ESMAEILI

• The matrix Wi = (w1, . . . , wi) has full column rank and Null(HT
i+1) =

Range(Wi).
• The matrix Pi = (p1, . . . , pi) has full column rank. The matrix Li =
AT

i Pi is a nonsingular lower triangular matrix.
• For all i, 1 ≤ i ≤ m, the vector xi+1 is a particular solution for the

first i equations. Moreover,

x = xi+1 +HT
i+1q, q ∈ Rn,

is the general solution for those equations.
• The updating formula Hi can be written as

Hi+1 = H1 −H1Ai(WT
i H1Ai)−1WT

i H1,

where WT
i H1Ai is strongly nonsingular (the determinants of all of its

main principal submatrices are nonzero).

Remark 2.2. Using the fifth property, Gu [3], Spedicato & Zhu [7] modified
ABS algorithm such that the matrices Hi are rectangular with full row rank.

3. Huang Algorithm and Its Versions

An important algorithm in ABS class is called Huang algorithm, introduced
by Huang [5] in a paper which led to the development of ABS class. The Huang
algorithm is obtained by choosing

H1 = I, zi = ai, wi = ai

for parameters of ABS algorithm, so that the updating formula (9) for H-
matrices is read as

(10) Hi+1 = Hi −
pip

T
i

aT
i pi

.

We note that, in this case, the H-matrices are symmetric.
In addition to ABS properties, Huang algorithm has some other interesting

properties listed below. For simplicity, it is assumed that rank(A) = m.

• Vectors pi, i = 1, . . . ,m, are corresponding to vectors obtained by
Gram-Schmidt orthogonalization process applied to the rows of A.
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• If x1 is a multiple of a1, then xi+1, i = 1, . . . ,m, is the least squares
solution for the first i equations. Moreover,

‖xi‖2 ≤ ‖xi+1‖2, ‖xi+1 − x+‖2 ≤ ‖xi − x+‖2,

where x+ = xm+1 is the least squares solution of (2).
• For every i, 1 ≤ i ≤ m, we have

HT
i = Hi, H2

i = Hi, Null(Hi) = Range(Pi−1).

• Since

(11) aT
i pi = aT

i Hiai = aT
i HiHiai = pT

i pi,

then quantities of aT
i pi are positive real numbers.

To proceed, we consider several versions of the Huang algorithm, correspond-
ing to various parameter choices and alternative formulations to compute p-
vectors and update H-matrices. In the next section, we compare these versions
numerically and determine the best one.

Version 1.

This is the standard Huang algorithm which can be stated as the following:

pi = Hiai, Hi+1 = Hi − piu
T
i , ui =

pi

aT
i pi

.

All elements of Hi are explicitly computed by this formula, implying generally
a loss of symmetry, since ui may not be an exact multiple of pi due to round-off
errors.

Version 2.

This method differs from the previous one in the fact that symmetry of Hi

is forced by applying the update formula only to the elements on and above the
diagonal and by setting the elements below the diagonal of index (i, j) equal
to the elements of index (j, i), j < i.
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Version 3.

This method differs form the version 1 in the fact that, according to (11),
we can replace aT

i pi with pT
i pi:

pi = Hiai, Hi+1 = Hi − piu
T
i , ui =

pi

pT
i pi

.

All elements of Hi are explicitly computed by this formula, implying generally
a loss of symmetry, since ui may not be an exact multiple of pi due to round-off
errors.

Version 4.

This method differs from the previous one by the fact that symmetry is
forced as in version 2.

Note. According to (10), the matrix Hi can be written as follows:

(12) Hi = I −
i−1∑
j=1

pjp
T
j

aT
j pj

.

Version 5.

In this method, we do not use H-matrices. Regarding (11) and (12), the
search vector pi can be obtained from

(13) pi = ai −
i−1∑
j=1

pT
j ai

pT
j pj

pj .

We note that (13) is the same Gram-Schmidt orthogonalization method (with-
out normalization) applied to the rows of A. Then, in exact arithmetic, Huang
method is equivalent to Gram-Schmidt orthogonalization method. However,
numerical experiments show that Huang method is stabler than Gram-Schmidt.

Version 6.

Here, according to (12), we can compute pi vectors by

(14) pi = ai −
i−1∑
j=1

pT
j ai

aT
j pj

pj .



A NUMERICAL EXPERIMENT WITH HUANG ALGORITHM 9

Version 7.

Since

Hipi = HiHipi = Hiai = pi,

then, by (12), we have

(15) Hi =
(
I −

pi−1p
T
i−1

pT
i−1ai−1

)
Hi−1.

Therefore, by putting pi
j = Hiaj , we can obtain the following recurrence rela-

tion to compute p vectors:

pi = pi
i,

where 
p1

j = aj j = 1, . . . ,m

pi+1
j = pi

j −
aT

i p
i
j

aT
i pi

pi j = i+ 1, . . . ,m, i = 1, . . . ,m− 1.

Here, in the ith stage, we must store m− i vectors. In particular, this version
is adequate for pivoting.

Version 8.

In this version the vector pi is obtained by pi = pi
i, where

pj
1 = aj j = 1, . . . ,m

pj+1
i = pj

i −
aT

j p
j
i

aT
j pj

pj j = 1, . . . , i− 1, i = 2, . . . ,m.

We note that pj
i = Hjai.

Version 9.

In version 8, we have

aT
j p

j
i = aT

j HjHjai = pT
j p

j
i , aT

j pj = aT
j Hjaj = aT

j HjHjaj = pT
j pj .

Hence, we can get the following version:

pi = pi
i,
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where 
pj
1 = aj j = 1, . . . ,m

pj+1
i = pj

i −
pT

j p
j
i

pT
j pj

pj j = 1, . . . , i− 1, i = 2, . . . ,m.

This version is, in fact, the stabilized Gram-Schmidt method applied to the
rows of A.

Version 10.

Another version can be obtained by substituting aT
j pj with pT

j pj in the
denominator of version 9, that is, in fact, a version of the stabilized Gram-
Schmidt method by itself:

pi = pi
i,

where 
pj
1 = aj j = 1, . . . ,m

pj+1
i = pj

i −
pT

j p
j
i

aT
j pj

pj j = 1, . . . , i− 1, i = 2, . . . ,m.

4. Numerical Experiments

In this section, the various versions of Huang method are numerically com-
pared. After determining the best version, we can compare it numerically
with LU decomposition (with partial pivoting) and QR decomposition (via the
Householder transformations).

Versions 1 to 10 of the Huang algorithm are compared with systems which
have the following matrix coefficients:

aij = max{i, j}(16)

aij = (i+ j − 1)−1(17)

aij = |i− j|(18)

aij = ai−1,j + ai,j−1, ai1 = aj1 = 1.(19)

Every system is of the order 10 or 17. For every system, we take 5 exact
solutions, the components of which are a random number belonging to [1, 1000].
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Then, we compute the right hand side accordingly. So, we solve 40 consistent
systems for every version. (Thus, 400 systems are solved.)

The criterion to compare versions is as follows: suppose that x and x are
exact solution and computed solution, respectively. Also, assume that

(µ10)ij = max
{
|xk − xk|
|xk|

, k = 1, . . . , 10
}
, 1 ≤ i ≤ 10, 1 ≤ j ≤ 20,

is the quantity according to the jth system of order 10 which is solved by
version i. If (µ10)ij ≤ 5× 10−t, then all components of the computed solution
by version i for the system j have at least t significant digits. Similarly, we
define (µ17)ij for 1 ≤ i ≤ 10 and 1 ≤ j ≤ 20. Take

µi =

 20∑
j=1

(µ10)ij +
20∑

j=1

(µ17)ij

 , i = 1, . . . , 10.

Note that, if µi1 > µi2 , then the computed solution by version i2 has com-
ponents with significant digits, more than those of version i1. Values of µis
corresponding to any version (up to 7 digits) are as follows:

µ1 = 1.304702, µ6 = 1.342882,
µ2 = 1.099594, µ7 = 1.096178,
µ3 = 1.419204, µ8 = 1.096178,
µ4 = 1.433135, µ9 = 1.359440,
µ5 = 1.492797, µ10 = 1.513501.

We observe that

µ7 = µ8 < µ2 < µ1 < µ6 < µ9 < µ3 < µ4 < µ5 < µ10.

Since version 6 has a better result than version 5, we can take version 6 as a
modification of the standard Gram-Schmidt method. Moreover, it is expected
that µ7 = µ8 since versions 7 and 8 are different only due to the order of com-
putations. Therefore, the Huang method without explicitly using H-matrices
(versions 7 and 8) gets some better results than those of stabilized Gram-
Schmidt (version 9). The best version of the Huang method (regarding the
correctness of the computed solution) is version 7. In what follows, by Huang
method we mean version 7.

Now, we compare the Huang method with the LU method (with partial
pivoting) and the QR method (with Householder transformations [4]). Since
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our main goal is merely to compare the accuracy of the computed solution
using the above algorithms, then, for simplicity, only two exact solutions are
used with following components:

xk = 1 ∀ k,(20)

xk = k ∀ k.(21)

The coefficient matrix, dimension of system, and criterion are the same as
before. The computing platform was a PC with a PIV processor at 2.2 MHz
and 512 Mb RAM. PASCAL language programming was used. Results have
been shown in table 1, where its entries denote error in computed solution. The
first 4 rows of table 1 are results according to systems with order 10 and the
other 4 rows are the results for systems of order 17. Table 1 shows that all 3
methods gets almost similar results for well-conditioned systems (systems which
matrix coefficients are (16) or (18)), while for ill-conditioned systems (which
matrix coefficients are (17) or (19)) the Huang method get good results. In
the general case, CPU time of the Huang method is greater than that of QR
method which, in turn, is also greater than that of LU method.

Type of matrix Exact solution of type (20) Exact solution of type (21)
LU QR Huang LU QR Huang

(16) 4.4E-11 4.1E-10 3.5E-10 1.6E-10 2.1E-10 1.0E-11

(17) 1.4E0 1.5E0 1.9E-4 2.3E0 1.9E-2 4.2E-4

(18) 2.9E-10 1.1E-10 4.4E-11 1.7E-10 0.6E-10 0.8E-10

(19) 1.1E-4 1.2E-4 1.0E-11 0.9E-4 1.3E-5 1.0E-11

(16) 4.7E-10 4.3E-10 0.7E-9 0.6E-9 1.5E-9 1.0E-11

(17) 2.0E+2 2.0E+2 1.3E0 1.0E+2 1.4E+2 0.6E0

(18) 1.0E-11 2.0E-10 3.0E-10 1.0E-11 0.7E-8 1.2E-9

(19) 4.4E+3 2.8E+3 1.0E-1 1.6E+4 0.7E+4 1.0E0

Table 1.

Conclusion

In this article, we presented ten versions of the Huang method in ABS class
and compared them numerically. Then, we presented the numerical compar-
isons of the best version obtained for the Huang method with LU (along partial
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pivoting) and QR (using Householder transformations) methods. Numerical re-
sults show that all three methods arrive at approximately similar results when
applied on well-conditioned problems while, for ill-conditioned problems, the
Huang method works better. To achieve exact results, 400 systems of linear
equations have been solved.
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