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Abstract 
The aim of this paper is to give a brief account of the development of the mathematical equivalence of quantum 
mechanics. In order to deal with atomic systems, Heisenberg developed matrix mechanics in 1925. Some time later, in 
the winter of 1926, Schrödinger established his wave mechanics. In the spring of 1926, quantum physicists had two 
theoretical models that allowed them to predict the same behaviour of the quantum systems, but both of them were 
very different. Schrödinger thought that the empirical equivalence could be explained by means of a proof of 
mathematical equivalence. 
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Resumen 
El objetivo de este artículo es ofrecer una breve reseña del desarrollo de la equivalencia matemática de las mecánicas 
cuánticas. Para tratar con los sistemas atómicos, Heisenberg desarrolló la mecánica matricial en 1925. Algún tiempo 
después, en el invierno de 1926, Schrödinger estableció su mecánica ondulatoria. En la primavera de 1926, los físicos 
cuánticos disponían de dos modelos teóricos que les permitían predecir el mismo comportamiento de los sistemas 
cuánticos, pero ambos eran muy diferentes. Schrödinger pensó que la equivalencia empírica podría ser explicada 
mediante una prueba de equivalencia matemática. 
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I. INTRODUCTION 
 
Quantum physics grew out from attempts to understand the 
strange behaviour of atomic systems, which were capable 
of assuming discrete energy changes only. The heroic 
origin of quantum theory dates from December 14th, 1900. 
The dramatis personae of the prehistory of quantum 
theory (1900-1924) includes the names of Max Planck, 
Albert Einstein or Niels Bohr. However, old quantum 
physics was a bridge over troubled waters: each problem 
had to be solved first within the classical physics realm, 
and only then the solution could be translated –by means 
of diverse computation rules (for instance: the 
Correspondence Principle of Bohr)– into a meaningful 
statement in quantum physics. These rules revealed a 
dismaying state of affairs in 1924. In words of Bohr, 
Kramers & Slater [1]: 
 

“At the present state of science it does not 
seem possible to avoid the formal character of 
the quantum theory which is shown by the 
fact that the interpretation of atomic 
phenomena does not involve a description of 

the mechanism of the discontinuous 
processes, which in the quantum theory of 
spectra are designated as transitions between 
stationary states of the atom.” 

 
Quantum physicists became more and more convinced that 
a radical change on the foundations of physics was 
necessary, that is to say: a new kind of mechanics which 
they called quantum mechanics. 
 
 
II. MATRIX MECHANICS 
 
In 1925 Werner Heisenberg developed matrix mechanics 
(MM) in his paper Über quantentheoretische Umdeutung 
kinematischer und mechanischer Beziehungen [2], 
although he did not even know what a matrix was, as Max 
Born and Pascual Jordan pointed out.  

Heisenberg aimed at constructing a quantum-
mechanical formalism corresponding as closely as possible 
to that of classical mechanics. Thus he considered the 
classical equation of motion 
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)(xfx = ,                                     (1) 
 
where he substituted x  and )(xf  by their quantum 
analogues. The classical position q and momentum p (and 
their operations q2, p2, pq...) were assigned the quantum 
position Q and the quantum moment P (and, respectively, 
their operations Q2, P2, PQ...), where Q and P were 
matrices completely determined by the intensity and 
frequency of the emitted or absorbed atomic radiation. 
These matrices satisfied the so-called ‘exact quantum 
condition’ 
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This equation was the only one of the formulae in quantum 
mechanics proposed by Heisenberg, Born & Jordan which 
contained Planck’s constant h. Finally, a variational 
principle, derived from correspondence considerations, 
yielded certain motion equations for a general Hamiltonian 
H, which was a close analogue of the classical canonical 
equations 
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Consequently, the basic matrix-mechanical problem was 
merely that of integrating these motion equations, i. e. the 
algebraic problem of diagonalizing the Hamiltonian 
matrix, whose eigenvalues were the quantum energy 
levels. 

 
 

III. WAVE MECHANICS 
 
In the winter of 1926 Erwin Schrödinger established his 
Wellenmechanik [3, 4]. The fundamental idea of wave 
mechanics (WM) was that the quantum phenomena had to 
be described adequately by specifying a definite wave 
function ψ . The wave equation that replaced the classical 
equation of motion was Schrödinger’s equation:  
 

ψψ EH =~ ,                                   (4) 
 
where H~  is the operator obtained by substitution of q and 
p in the classical Hamiltonian by the operators 
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and 
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The basic wave-mechanical problem was now that of 

solving this partial differential equation. The eigenvalues 
En were, according to Schrödinger, the quantum energy 
levels. 

However one month before Schrödinger published his 
famous equation (4), the Hungarian physicist Cornel 
Lanczos wrote an integral equation as the first non-
matricial version of quantum mechanics [5]. But if we 
transform the integral equation into a differential one, 
there results the Schrödinger equation (4) for stationary 
states [6]. 

Thus in the spring of 1926 quantum physicists disposed 
of two theoretical models in order to deal with such 
observable phenomena like the electromagnetic emission 
and absorption atomic spectra (quantum spectra). In other 
words, they had two different hypothetical reconstructions 
of quantum phenomena for the prediction of the same 
behaviour of the quantum system under investigation. Both 
of them were mathematically different but empirically 
equivalent. How could this fact be accounted for? 

 
 

IV. THE MATHEMATICAL EQUIVALENCE 
BETWEEN MATRIX MECHANICS AND 
WAVE MECHANICS 
 
Schrödinger thought that the empirical equivalence could 
be explained by means of a proof of mathematical 
equivalence. Were he able to prove the mathematical 
equivalence of MM and WM, then a weaker equivalence 
should also hold: both mechanics would necessarily be 
empirically equivalent. That was the aim of his paper Über 
das Verhältnis der Heisenberg-Born-Jordanschen 
Quantenmechanik zu der meinen of May, 1926 [7]. In his 
own words: 
 

“Considering the extraordinary differences 
between the starting-points and the 
concepts of Heisenberg’s quantum 
mechanics and of the theory which has 
been designated ‘undulatory’ or ‘physical’ 
mechanics, and has lately been described 
here, it is very strange that these two new 
theories agree with one another with 
regard to the known facts, where they 
differ from the old quantum theory. [...] 
That is really very remarkable, because 
starting-points, presentations, methods, and 
in fact the whole mathematical apparatus, 
seem fundamentally different. [...] In what 
follows the very intimate inner connection 
between Heisenberg’s quantum mechanics 
and my wave mechanics will be disclosed. 
From the formal mathematical standpoint, 
one might well speak of the identity of the 
two theories.” 
 

However Schrödinger was not able to establish the 
mathematical equivalence between WM and MM due to 
conceptual and technical difficulties [8, 9, 10, 11]. He did 
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prove indeed that WM is contained in MM, but not the 
reciprocal, and this is a serious flaw. To be precise: given 
an arbitrary complete orthonormal system of proper wave 
functions }{ kϕ , Schrödinger was able to show that each 

operator F~  of WM could be related to a matrix F of MM 
in the following way: 
 

{ }kϕΘ : { Operators of WM }→  { Matrices of MM }, 
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i. e., as Schrödinger [7] claims: “a matrix element is 
computed by multiplying the function of the orthogonal 
system denoted by the row-index [...] by the result arising 
from using our operator in the orthogonal function 
corresponding to the column-index, and then by 
integrating the whole over the domain”. In particular, 
Schrödinger obtained: 
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and 
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where the results Q and P satisfy Heisenberg’s formal 
rules (the so called ‘exact quantum condition’). The main 
issue here was whether or not the algebraic morphism Θ  
is an isomorphism. 

Obviously morphism Θ  between operators in WM and 
matrices in MM is not an isomorphism, since every 
undulatory operator is assigned a different matrix (thus Θ  
is injective), but not necessarily every matrix in MM 
comes from an operator (surjectivity condition). Θ  is 

injective because “ F~  is fixed uniquely by the matrix 
( mnF )” [7]. But it is not surjective because for each 

operator F~  of WM the matrix F of MM is a Wintner 
matrix (i. e. its rows and columns are of sumable square), 
and the original postulates in Heisenberg’s MM do not 
require a priori the matrices to be Wintner ones [8, 10]. 
Schrödinger proved that no more than one operator of WM 
can be mapped onto a given matrix of MM (because of 
injectivity), but he did not prove that there always exists an 
operator of WM corresponding to any arbitrary matrix of 

MM (surjectivity), as von Neumann [12] noticed. 
Moreover, his morphisms Θ  depended on the fixed 
system of proper wave functions }{ kϕ , and these 
functions cannot be reconstructed from the numerically 
given matrices, since Schrödinger’s mathematical problem 
of momenta cannot be solved in general [11]. 

Applying Dirac’s basic concepts formulated later on in 
quantum mechanics, I can claim that Schrödinger tried to 
prove the equivalence between observables, i. e. between 
the operators of WM and the matrices of MM. However he 
could not even attempt to construct the equivalence 
between states, i. e. the wave functions in WM, because 
MM did not have any space of states. Indeed the notion 
‘stationary state’ did not occur in MM, as Muller [11] 
claims: 
 

“The absence of states in matrix mechanics 
was not a mathematical oversight of the 
founding fathers. On the contrary, 
Heisenberg counted the abolition of such 
unobservable relics from the old quantum 
theory, wherein (stationary) states were 
identified with electron orbits, as a personal 
victory.” 
 

In order to show the importance of this handicap, it 
suffices to note, according to Beller [13], that whereas 
WM was able of conceptualising a single stationary state 
by means of a standing wave, whose frequency was 
identified with a spectral term, MM lacked of this 
capability, as von Neumann [12] noticed. 

Carl Eckart’s simultaneous proof of mathematical 
equivalence [14] contained all the essential mistakes of 
Schrödinger’s paper. Eckart’s approach is a special case of 
Schrödinger’s method. Thus the result is the same: the 
action of the wave operators on an arbitrary function 
cannot be calculated from the knowledge of the numerical 
matrices. 

In the autumn of 1926 Paul Dirac formulated the theory 
of general linear transformations, which corresponded to 
the canonical transformations of classical mechanics, and 
are nowadays known as the unitary transformations in 
Hilbert space. Dirac was the first who pointed out the 
difference between states and observables of a physical 
system, a distinction which was present in WM (wave 
functions/wave operators) but not in MM, where only 
matrices were considered. How could then states be 
accounted for in MM? The states were, according to Dirac, 
the eigenvectors of the matrix H of MM, i. e. the elements 
of the transformation matrix of H, which were just the 
proper functions of Schrödinger’s wave equation. 

But the difficulties of formulating a mathematically 
tractable version of Dirac’s quantum mechanics were quite 
formidable, due, among other reasons, to the pathological 
Dirac’s improper δ-function. Dirac’s Principles of 
Quantum Mechanics, 1930 [15], was criticized by von 
Neumann because of its lack of mathematical rigour. 
Therefore Jammer [16] claimed that “Full clarification on 
this matter has been reached only by John von Neumann 
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when he showed in 1929 that, ultimately due to the famous 
Riesz-Fischer theorem in functional analysis, the 
Heisenberg and Schrödinger formalism are operator calculi 
on isomorphic (isometric) realizations of the same Hilbert 
space and hence equivalent formulations of one and the 
same conceptual substratum”. Von Neumann’s 
Mathematical Foundations of Quantum Mechanics, 1932 
[12], was the definitive mathematical framework for the 
new quantum physics. 

Von Neumann solved the quarrel of the mathematical 
equivalence as he showed that Heisenberg’s MM –focused 
on discrete matrices and sums– and Schrödinger’s WM –
focused on continuous functions and integrations– are 
algebraic isomorphic operator calculi (the structure of the 
observables) on topological isomorphic and isometric 
realizations of the same Hilbert space (the structure of the 
states), and this thanks to the famous functional analysis 
theorem of Riesz & Fischer. Von Neumann identified the 
space of wave functions with 
 

2L  (R) = { |: CRf →  f  Lebesgue measurable 

 and ∫
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and the space of states in MM, postulated by Dirac, with 
the space of sequences 
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from which every matrix in MM can be generated (this 
was a later development which was not originally present 
in Heisenberg’s theory). And for this two spaces the Riesz-
Fischer theorem claims that, given a complete orthonormal 
system }{ kϕ , 

{ }
22 )(: →Φ RL

kϕ
, +∞

=1),( kkϕψψ            (12) 
 

is an isometric isomorphism, i. e. “ 2L  and 2  are 
isomorphic [...] it is possible to set up a one-to-one 
correspondence between 2L  and 2  [...] and conversely in 
such manner that this correspondence is linear and 
isometric” [12]. 
 
 
IV. CONCLUSION 

 
Summing up, the existence of these two apparently very 
different formulations of quantum theory is not accidental 

and they are indeed alternative isomorphic expressions of 
the same  underlying  mathematical  structure. Thus, due to 
this isomorphism, MM and WM must always yield the 
same empirical predictions. 
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