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In this work the problem of identificating flaws or voids in elastic solids is
addressed both from a theoretical and an experimental point of view. Follow-
ing a so called “inverse procedure”, which is based on appropriately devised
experiments and a particular bounding of the strain energy, a “gap functional”
for flaw identification is proposed.

1. DIRECT AND INVERSE PROBLEMS

The modern theory of elasticity and its related methods of solution by
discretization techniques are nowadays able to solve practically any structural
problem which is formulated in the direct way.

Let us make reference to the linearly elastic equilibrium problem repre-
sented by the well-known Navier-Cauchy field equations (see fig. 1)

pA?u(x) + (A +p)Vdivu(x) +b(x) =0, x€V (1)
with associated Neumann’s conditions on the free boundary
(CSymVun=t, xe€dl (2)
and Dirichlet’s ones on the constrained boundary

u=ug, x€aV (3)

tEditor’s Note: This paper was presented in the “Third Metting on Current Ideas in
Mechanics and Related Fields” celebrated in Segovia (Spain) in June 1995 and it was intended
to appear in Extracta Mathematicae, Vol. 11, Nim. 1 (1996), where all the contributions
to this metting were collected.
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Figure 1.

In the above equation u(x) is the unknown displacement field defined on
the domain V C E? occupied by the solid, A and p are the Lamé’s elastic con-
stants for an homogeneous and isotropic material, b is the volume forces field,
Sym Vu is the infinitesimal deformation tensor, C is the symmetric tensor of
the elastic constants (depending on A and p). Moreover, T = C Sym Vu is the
Cauchy stress tensor, n is the outward unit normal field on dV, t is the trac-
tion field on AV; and uy is the displacement field imposed on the costrained
boundary 0V,.

As direct formulation we mean that formulation of the problem of the
elastic equilibrium in which the geometry, the elastic constants and the field
equations, together with the boundary conditions, are assigned, while displace-
ments, strains, stresses and tractions result unknown.

Known quantities:
V, aVg, V4, A, u, C, b, t(x) Vx €0V, up(x) Vxe€ V.
Unknown quantities:
u(x), e =SymVu, 0 =CSymVu, on=t Vx € 0Vy .

Recently, in the material and structural engineering the problem of the
elastic equilibrium in the so called inverse formulation is becoming more and
more important. In fact, this formulation allows to deal with relevant questions
of civil, aeronautic and mechanical engineering.

As a matter of fact the actual behaviour of real systems can be quite
different from the theoretical one.

With reference to the equilibrium of linearly elastic solids, it may happen
that:
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- the bonds assigned on the boundary may be governed by equations which
are quite different from the modelled ones, this on account of local effects
arisen during the construction (as building imperfections, yieldings or
distorsions);

- inhomogeneities and anisotropies may take place in some zones, voids
and inclusions of different materials may be present and modify the
structural response;

- flaws, delaminations or detachments may be present in the volume or in
proximity of the boundary. These defects may arise during the loading
history, or be present in the construction from the beginning.

Therefore, as inverse formulation we mean that formulation of the problem
of the elastic equilibrium in which the field equations are assigned, and the
displacement field is known, having been experimentally read on the boundary.
On the contrary, some data which are given in the direct formulation in this
case result unknown and need to be identified. In particular the unknown
quantities may be:

- the effective geometry of the solid and of the nonvisible boundaries, if
any,

- the elastic constants of the material and the density of some parts of the
solid;

- the body forces and/or the boundary tractions;
- displacement, strain and stress fields inside the region occupied by the

body.

A table of possible perturbations which can take place in actual cases is
given in the fig. 2.

In such cases the inverse problem presents further unknown entities:
- an internal boundary dV; of a void w;

- an internal surface S due to a detachment;

- an inclusion Vs of material with different elastic costants;

- a sub-domain Vi with different density.



64 GESUALDO, GUARRACINO, MALLARDO, MINUTOLO, NUNZIANTE

Interna
invisible
fracture.
nclusion of
material with
different elastic
costants.

Figure 2.

It is obvious that the above mentioned problem may not result generally
solvable. With reference to the single perturbation, however, it is possible to
identify its effects on the structural behaviour and, consequently, its entity and
position. This happens by means of laboratory and numerical experiments,
which can provide a full set of data on the boundary of the real solid and allow
a comparison with the theoretical behaviour of the “perfect solid”.

Object of this paper is the study of the presence of invisible voids or de-
tachments at the inside of the solid and the development of some theoretical
tools apt to identify these flaws, that is a specially designed “gap functional”.

The background of this work lies on some simple concepts of fracture me-
chanics, as well as on the recent development of inverse methods [Mura, 1982;
Natke, 1994; Bui, 1993]. It is worth noticing that some of the following the-
oretical result have already been deducted [Villaggio, (1977)] by means of a
complementary energy approach.

2. THE ELASTIC SOLID WITH A SMALL FLAW

In this section we tackle two problems in the field of linear elastostatics.

The first one is represented by the presence of a small flaw inside a linearly
elastic solid, i.e. a detachment on an internal surface S on account of the
occurrence of a very small discontinuity between two faces. This surface S may
join the boundary of the solid or not. Without respect to the way in which the
detachment took place, in this paper it is proved that under prescribed loads
and fixed constraints the solid embeds an elastic energy WP which is greater
than the energy embedded in the same solid in absence of the flaw and under
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the same loading. The bounding of the strain energy leads to a bounding of
the generalised displacements of the loaded parts of the boundary as well.

The second problem is represented by the above introduced solid in which
also an anelastic strain field is present. This stands for the very actual case of
solids in which fractures, delaminations or other defects are joined by inelastic
deformations and by a system of relevant self stresses [Lippman, 1977].

The proved theorems, however simple, seem promising of interesting results
in the identification of internal defects by coupling numerical analysis and
experimental data, as it has been already widely shown [Bui and Tanaka,
1994; Rice, 1968; Popelar and Kanninen, 1985; Bittanti, Maier and Nappi,
1984; Mroz, 1994; Guarracino et al., 1995; Nunziante et. al., ’95].

2.1. THE CASE OF APPLIED TRACTIONS. Let us start our discourse by
considering an homogeneous linearly elastic solid V; (fig. 3.a), with mixed
boundary conditions. This first problem will be called “the problem of the
integer solid”.

The case of fixed constraints and applied loads is now treated: the same line
of reasoning leads to similar results in the case of zero tractions and prescribed
boundary displacements.

Let u' be the unique displacement field solution of the Navier-Cauchy
equations for the “integer solid”, and ! the strain tensor field derived by ul
as the symmetric part of the gradient of ul. The stress tensor o! can be
obtained by €' by the well known stress-strain relationship o' = C el.

Let us then consider a second problem consisting of a solid V (fig. 3.b)
featuring the same shape, the same material constants, fixed constraints and
applied loads of the first one. The only difference lies in the presence of a flaw
at the internal surface S. We operate in the framework of the infinitesimal
displacement theory of elasticity, and suppose that the flaw is an infinitesimal
detachment of the two sides of the surface S, without any loss of material.
Under this assumption the volume w included in the surface S may be consid-
ered as vanishing. In correspondence with S a jump of the displacement field
may take place. The surface S is assumed to be regular almost everywhere.

Let n be the unit outward normal vector field at the regular points of S,
u the unique displacement field solution of the second problem and ¢ and o
the strain and stress fields, respectively. For the moment let us suppose that
in the detached solid there are no self stresses, as it may happen on account
of inelastic effects yielded by the detachment.
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a) First problem b) Second problem
(b, t, wy, £, 01) (b, t, u, €, 0)

Figure 3.

Moreover, let p be the traction vector field acting on the surface S of
normal n in the integer solid, and whose value is yielded by the equation:

p=o'n (4)

P is supposed to be non zero everywhere.

Now we wish to compare the integer solid with the detached one.

Thanks to the infinitesimal displacement assumption, the displacement
field u in V of the detached solid can be regarded as the sum of the solution
of the integer one and of the solution U of a third problem (see fig. 4) which
consists of the detached solid loaded on S by the opposite of the already
computed surface tractions (4), i.e. —p = —o! n.

Therefore the following relationships hold true:
u=u'+d, e=¢c'4+7, o=0'+7. (5)

Application of Clapeyron’s theorem to the third, the first and the second
problem, respectively, leads to:

S \%4

/ tulds+/bu1 dV:/alsldV=2W (7)
2A% \4 \'4
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/ tudS+/budV=/credV=2WD (8)
ov 1% \4

where, W, W and WP are the elastic strain energy of the third problem, of
the “integer solid” and of the “detached solid”, respectively.

Figure 4: Third problem (—p,1,¢,d).

As the volume w of the flaw is infinitesimal, the domains of the two prob-
lems coincide.
By virtue of the equations (6), (7) and (8), and by taking into account that

/EeldV=0=—/pu1dS’
12 S

as the stress field & corresponds to the self-equilibrated traction field —p on
S and u! is continuous on S, we have

2wWP = / ast=/(01+6)(61+'6') dv
1% v
= / aleldv+/ EEdV+2/ GeldV=2W+2W.
1% 1% 1%
Hence the following inequality holds true
wP>w (9)

and proves that:
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THEOREM 1. The elastic solid with a small internal flaw and subject to
any applied loads and fixed constraints, presents a strain energy WP which
is greater than the energy W accumulated by the integer one under the same
loads and constraints.

When a generalised force-displacement theory can be established, as it is
the case of rods, beams, plates and shells, inequality (9) gives

(F u) > (F u!) (10)

provided there are null volume forces (b = 0), and the tractions consist of a
single point load F. This is equivalent to

up > u}p (11)

where up and u}. are the generalised components of displacement of the loaded
points in the direction of F, with reference to the detached solid and to the
integer one, respectively. The following theorem is thus proved:

THEOREM 2. Let us consider a structural framework for which a gener-
alised force-displacement theory exists. Let an integer solid be subject to
fixed constraints and to the action of a single generalised force F, and let
us take into consideration a second solid with a small internal flaw which is
subject to the same loading and constraint conditions of the previous one.
Under these assumptions the generalised displacement ur in the direction of
the force F of the loaded point of the detached solid results greater than the
corresponding value u}. of the same point of the integral one.

It is noteworthy that, having determined by means of simple experiment
the displacement up , the comparison with the theoretical value u}, of the
integer solid leads to a necessary condition for the existence of an internal
detachment in the solid under analysis.

2.2. THE CASE OF APPLIED DISPLACEMENTS. In the case of zero ap-
plied tractions and non zero prescribed displacements of a part 9V, of the
boundary, a procedure similar to that of the previous number leads to corre-
sponding results. In fact, with reference to fig. 5, let us consider the problem
5.a of an integer solid subject to prescribed displacements u* on the con-
strained part 0V, of the boundary and to zero tractions t =0 on the free
boundary AV;. The volume forces are zero as well, i.e. b=0 . Let u‘, ¢, o*
be the solution of this problem, and W* the corresponding strain energy.
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ui=u- on oV.u we=u- on dV.
a) Integer solid b) Detached solid c)
b=0on V, t=0 on av.. b=0on V, t=0on dv.
Figure 5.

Let us then consider the problem 5.b represented by the same solid with
an internal detachment in correspondence with the internal surface S and
subject to the same boundary conditions. Be u?, €%, o the fields solution of
this case. Finally, let us take into account the detached solid of fig. 5.c with
fixed constraints u = 0 on 9V, and loaded on the surface S by the tractions
—p = —o'n which correspond to the ones evaluated for the integer solid. Be
1, £, o the solution of this problem.

In this case the following relationships hold true:

d

w=u+1, ?=¢+7, o

=d'+0

and it follows

QWi = /VaisidV=/V(ad-a—“) (ad—f) av

= /adeddv+/§§dV—2/adEdV=2wd+2W
1% 1% 174

where W*, W and w represent the strain energy of the previous problems,
respectively. In fact we have:

/od?def YT dS =0.
\%4 ovuUS

As t? =0 on 0V, @ =0 on 0V, and p = 0 on S. Therefore it is

wi>we, (12)
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i.e. an inequality correspondent to the above proved (9).
Hence the following theorem holds true:

THEOREM 3. Let us consider an elastic solid with an internal flaw and
subject to prescribed and not identically vanishing displacements u* on the
constrained part of the boundary, to zero applied tractions on 0V; and to zero
volume forces in V. The comparison between this solid and the corresponding
“Integer solid” (in which the detachment is not present) subject to the same
displacement field u* of the constraints, shows that the strain energy W¢ of
the first is smaller than that W* of the integer solid.

2.3. THE PRESENCE OF DISTORTIONS AND SELF STRESSES IN THE DE-
TACHED SOLID. Let a strain field be initially present in the above consid-
ered detached solid (number 2.1). We suppose that it can be represented as
e* = g, + €, i.e. by means of the sum of a distortional and kinematically
not compatible part €5, and of an elastic part e; which makes compatible the
resulting field €* . In order to avoid the trivial case, let us suppose that € # 0
almost everywhere. _

In this solid a system of self stresses takes place. Its value is given by the
constitutive relationships:

ot =Cel. (13)

The displacements u®, the strains €° and the stresses ¢°, which consti-
tute the solution of this problem (“fourth problem”) are represented by the
following equations, in virtue of the superposition principle:

v=u+u =u+a+u*,
e =c+et=c'+e+er =€ +e+e)+¢),

o =c+c* =0l +7+0".

The starred elements correspond to the presence of the distortion, while the
quantities denoted by the bar or the superscript 1, retain the same meaning
as before (see figs. 3.a, 3.b and 4).

Now we want to evaluate the effect of the distortions on the strain energy of
the detached solid. In particular we want to compare the elastic strain energy
WPof this fourth problem, in which self stresses are present, with the value
WP attained in the same solid in absence of self stresses (second problem in
the number 2.1).
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The strain energy of the detached solid is given by:

WDI%/V(O'I-I-E) (e' +%) dV=%/V(el+€) C (e'+8) dV  (14)

while the strain energy of the fourth problem has the following value

WP=-;-/ (' +z+¢el) C (et +z+ek) dv. (15)
14
Therefore it follows
1
WP—WD=§/e;ce;;dv+/(al+a) ek dv. (16)
\4 |4

By virtue of the positive definiteness of the first integral at the right hand
term, the previous equation shows that, provided

/V (o' +7) & dV >0 (17)
holds true, we have
wP>wb. (18)

Hence the strain energy of the detached solid with self stresses is greater than
that of the solid without self stresses.
Coupling equation (9) and (18), we obtain the inequality chain

wEP>wP>w (19)
and we prove the following theorem:

THEOREM 4. The presence of an inelastic strain field with related self
stresses in a solid which features a small internal flaw and is subject to surface
and volume forces and to fixed constraints, leads to an elastic strain energy W¥
greater than the one WP corresponding to the absence of such self stresses.
This happens provided eq.(17) holds true.

On the contrary, if the following inequality holds true:

1
/ (o' +3) 5;dV<—§/e: Cetdv, (20)
\%4 \%4
then we have
wf <w? (21)

and the strain energy of the detached solid results greater than the one of the
solid in which the self-stresses are present.
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3. EFFECTS DUE TO THE PRESENCE OF A VOID IN AN ELASTIC SOLID

It often happens that during the manufacturing process, some undesirable
voids may take place in structural elements. It is therefore necessary to develop
suitable procedures in order to allow the detection of the cavity.

Thus, let us address the problem of a solid V' featuring an internal void w
with an unknown boundary S. We will reason under the same hypotheses of
the previous section, namely homogeneous linearly elastic material, infinitesi-
mal displacements and a suitable degree of smoothness of the boundaries 0V
and S. For the sake of clarity, we consider only tractions t and volume forces
b, together with fixed constraints di dV,,. We want to compare the solution of
this elastic equilibrium problem, which we call “problem 27, with that of the
same solid without the void w of volume V;, which we call “problem 1”7 (see
fig. 6).

Ly Ly
\Y% Vi

€
7

Problem 1 (b, t, wi, €, O1) Problem 2 (b, t, u, €, 0)

Figure 6.

The volume forces will obviously vanish only in the region w of problem 2.

Let (b, t, uj, €1, 01) and (b, t, u, €, o) be the sets of loads, displacements,
strain and stress fields of problems 1 and 2, respectively.

The solution of problem 2 will evidently present zero tractions on S.

We want to establish a relationship between the strain energy of problem
1 and that of problem 2. The volume of solid 1 is V and that of solid 2 is V;,
being V=V; Uw.

Application of Clapeyron’s theorem to problems 1 and 2, allows us to write

/ t u1dS+/ b u;dV + / b u;dV =/ o1e1dV + / o161dV =2 W
v V1 w V1 w
(22)

/ tudS+/budV=/aedV=2WV (23)
ov 4 1%



FLAW IDENTIFICATION IN ELASTIC SOLIDS 73

where W and Wy are the strain energies of the solid in absence and in presence
of the void, respectively.

In what follows we apply the Virtual Work Equation (VWE) to particular
equilibrated forces-stresses fields and compatible displacement-strains fields;
the VWE will be applied to the intersection of the domains V and Vi, i.e.
Vi=Vnv;.

The solution of problem 2 (b, t, u, €, ) can be obtained by superposition
of two systems (see fig. 7): the first is the restriction of the solution of problem
1 to the volume V7, the second is the solution corresponding to the application
of the stresses —p on the internal surface S (they represent the action of w on

V).
Ly Ly
— _ AR N =
ZN AN paN AN yaN AN
Problem 2 (b, t, u, €, O) Problem 1 (b, t, w,, &, O) Problem 2" (-p, U, €, ©)
Figure 7.
We have:
u=u +U, e=¢€1+E&, c=01+70 xeWV (24)

We can insert these relationships in the (23) and perform a comparison
with (22), obtaining

—/buldV—i—/alsldV—f—/ tﬁdS+/ b udV
w w ov V1

=2/ alde+/ gedV . (25)
Vi 14

By means of the application of the VWE to particular states of equilibrated
forces-stresses and compatible displacement strains, we have

VWE 1-2” / tudS + / budV + / pudS = 018dV  (26)
ov i N Vi

VWE 27-2” —/ pudsS = oedV (27)
S \%t
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We can now combine (26) and (27)
/ tﬁdS+/bﬁdV= 6EdV+/ o1E dV (28)
ov V1 V1 Vl
and insert the result in (25), getting
/ Ulng:—/buldV+/01€1dV. (29)
1% w w ]
By substituting (29) in (28), as we have
/EEdV >0, /oleldV >0, du=u-—us,
V1 w
we get

/ tudS+/budV— tu dS — buldV+/bu1dV=0.
av Vi )% w

Vi
(30)
Finally we can rearrange this equation to obtain
WV>W—/bu1dV. (31)
w

Hence, the strain energy Wy of an homogeneous and linearly elastic solid,
which is subject to fixed constraints and prescribed loads (t, b) and features
an internal void, satisfies the inequality (31). W is the strain energy of the
same problem in absence of voids. Equation (31) makes possible to deduce a
full class of useful inequalities with reference to the displacements of loaded
points, as we have already done in Sect. 2.1.

4. A GApr FUNCTIONAL FOR THE IDENTIFICATION OF INTERNAL FLAWS

In this section a “gap functional” for the identification of internal flaws and
relevant displacement discontinuities in a linearly elastic body is proposed.

This functional is based on the sole knowledge of the boundary displace-
ment field and can lead to the identification of both position and shape of the
internal discontinuity. The case of zero volume forces will be treated.
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Figure 8.

Let u be the boundary displacement field of the integer solid Q2. It can be
obtained by means of experimental or numerical tests, following the applica-
tion of tractions t on the free boundary 9. T is the reaction field (fig. 8a) -
on the constrained boundary 052,.

Let u be the boundary displacement field of the same elastic solid 2 featur-
ing an internal void w which is surronded by the boundary S. The boundary
displacement field and the reaction field r may be obtained by means of a
suitable experimental technique.

Let us finally consider an auxiliary problem constituted by the three-
dimensional elastic space E? which is loaded by a pair of opposite unit forces
acting in the z; direction and applied at the points A and B, whose distance
is 6. The solution u* of this problem is obtained by superposing the Kelvin’s
fundamental solutions (fig. 8c) corresponding to each unit load. The traction
field on the surface corresponding to the boundary of the solid € is denoted
as t*.

The solutions @ and u* are restricted to the domain of the fractured solid
Q—w.

The fact that on the boundary 09 the difference v =t — u does not vanish
everywhere, constitutes a condition which is sufficient to reveal the presence
of the expected defect:

v=u—u#0, x € 09Q2. (32)

The displacement field v corresponds to vanishing boundary tractions dt on
0€); and to the reactions

dr=r—r. (33)
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The application of the reciprocity equation to the elastic states u* and v leads
to the following integral equation, which is referred to the domain Q — w

1-Av{‘3+/

t*v dS + / t*v dS = ot u*dS + dr u*dS. (34)
onN S

aﬂt aQu
As known, this is an integral relationship of the Somigliana’s type.

If we take into account the fact that 0t = 0 as the problems (a) and (b)
are subject to the same tractions, it turns out that equation (34) can be read
as

1-AvfP + / t'v dS = —/ t*v dS + or u*ds. (35)
S aQ eie

It is worth noticing that the left hand term of equation (35) cannot be
evaluated directly because it involves unknown quantities. It defines the so
called “differential gap functional”

G = AvfB + / t*v dS (36)
S
whose values can be calculated by means of the right hand term of equation
(35). This involves only known boundary quantities, and requires a suitable
numerical procedure dealing with experimental data.
A simple analysis leads to the following results:

(1) G = 0 is a necessary condition for v =0 and u = @ and, consequently,
to state the absence of voids.

(2) G #0 is a sufficient condition for a void to be present.

In this case it is possible to decompose G in the form
G = Av¢ + Av] + / t*v dS (37)
S

where:

Avf is the elastic part of the displacement difference;

AviJ is the jump in the displacement field; this value is obviously zero if
the pair of unit forces does not lie across a fracture, on the contrary it results
non zero if the line between the collocation points A and B passes through a
fracture.

The term |, g t*v dS can be noticeable when a fracture is present and the
force doublet is collocated nearby. As a result the sum (Av] + [, t*v dS)
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tends to an extremum value when the collocation points A and B lay across
the unknown fracture.

The numerical evaluation of the functional G for a discrete and suitable
choice of collocation points will allow the identification of the position and
shape of any flaw.

It is noteworthy that the experimental mapping of the boundary fields
requires a suitable technique which in any case must be related to the extent
of the unknown flaw.

5. AN IDENTIFICATION PROCEDURE BASED ON LASER HOLOGRAPHIC
TECHNIQUES

The theoretic development presented in the previous sections has been
successfully applied to the identification of flaws in Plexiglas specimens in
conjunction with an experimental technique based on laser holography.

The goal of the proposed identification procedure consists in deriving in-
formation about the internal structure of the body and in particular about
the position and size of possible flaws.

In order to accomplish this, from the previous discourse it stems that it is
necessary to follow two steps:

- acquisition of boundary data;
- formulation of a theoretical procedure and of a relevant numerical algo-
rithm aimed to the identification of defects.

With reference to the first step, there are two major requirements:

(a) a high accuracy even for a very low level of applied loads;
(b) a fine meshing of the boundary data.

For both the above reasons it seemed appropriate to employ a laser holo-
graphic interferometer for the experimental mapping of boundary displace-
ment fields.

With reference to the second step, there are three major requirements:

(a) a low amount of computation;
(b) an high accuracy of the numerical results;

(c) making reference to the sole boundary values.

The natural choice is therefore a boundary integral approach.
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Figure 9-b.

5.1. AcQUISITION OF EXPERIMENTAL DATA. Figures 9.a and 9.b refer
to the holographic desk used. It consists of a laser source, two parabolic
mirrors, and a computer to process the data. A holographic interferometery
technique with double exposition was employed.

The laser beam is split into two different rays. The first one (reference ray)
goes directly to the film (AGFA holographic film BE75), while the second one
is directed to the specimen under analysis.

Both rays are expanded by means of a microscopic lens and filtered by
means of a pin-hole. They successively reach two parabolic mirrors which in
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turn determine two plane wave fronts.

As result a picture representing the displacement field in the form of diffrac-
tion lines is obtained. The value of the wave length is 0.632um, and this
determines the level of precision achievable.

Three specimens were tested. They were all 180mm long, 30mm high and
9.7mm wide, but the first had no flaws, the second an horizontal crack and
the third a vertical one. Both the horizontal and the vertical cracks measured
10mm, with the centre at 65mm from the left external side (fig. 10).

) 10
20 )
Y <« 30
v
< 65 9.7
180 mm >
20
v IT10 30
v’
65 9.7
180 mm
110

150 150 mm 150
Figure 10.

The three samples were simply supported at A and B and were loaded
by two concentrated forces in the range of 1.5+ 3kg. They were symmetri-
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cally placed at 55mm from the centres of the specimens. The supports were
symmetrically placed at 75mm from the centre (fig. 10).

With the holographic result for the specimen without flaws, it has been
possible to evaluate the displacement field on the inferior and lateral sides
of the specimen making reference to the number and the shape of the dark
lines. There was a lack of symmetry due to the non-perfectly symmetrical
application of the loads, which gave origin to a torsional deformation mode in
addition to the expected bending one.

The holographic result for the vertical flaw showed dark lines which were
more dense on the flawed side, which denotes increased displacement values.

Fig. 11 shows the displacement diagram for an horizontal line at the bot-
tom face of the three specimens. The maximum values are in the range of
18.60um for both the specimen with no flaws and the one with the horizontal
flaw, and 19.80um for the specimen with the vertical flaw.

It is so clear that the horizontal flaw has practically no effect with reference
to the adopted loading condition.

i 2 3 4 5 6 7 8 9 10 1 ©” B ¥ *

Figure 11.

5.2. NUMERICAL PROCEDURE. The numerical processing of the bound-
ary experimental data was based on the above proposed gap functional (36).



FLAW IDENTIFICATION IN ELASTIC SOLIDS 81

Somigliana’s identity (34) has been written for the problem at hand making
reference to the fundamental solution for plane stresses and to the elastic state
of the tested specimen.
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1 X \ 3cm 3 -— — 4 |3cm
l_ e - |
- - ’ l §
15¢cm 15cm
0.00006 0.00004
0.00004 0.00002
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—o.oo00z|] 2l (¢4 6 & 10 12 14
_0.00002| 2 E/’B,m 2o
-0.00004 —0.00006
-0.00006 -0.00008 ‘
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0.000015 0.00004
0.00001 0.00003
5. 10 0.00002
-6 1) 4 0.00001
-5. 10
-0.00001
8 10 12 14
-0.000015 -0.00001d {/6/_/
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Figure 12-a.

Displacement and traction fields of the Kelvin’s dipole solution for the
region under analysis are

1
8r(l—v)p
1

+m [(3 — 411) ln (7‘2) (51'1 — T2,i 7‘2’1] ,

u; (x) = — [((3=4v)In(r1)b6n — 71 71,1
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1
dr(1—v)m

0
. {[(1 - 21/) (5@’1 + 2 T1,i 7‘1’1] —a—rnl - (]. - 21/) (Tl,i ny— T, n,)}

1
dr (1 —v)ry

o
. {[(1 — 20) 61y +2 7o T21] "a% — (1= 20) (ra; m1 — 721 ni)}

+

where, with the symbols represented in fig. 12.a, we have
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Figure 12-b.

tp(n) on side 4
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Figg. 12.a and 12.b represent the traction fields of the Kelvin’s dipole
fundamental solution with reference to the four sides of the specimen.
The above defined gap functional G, i.e.,

G=—/ t*v dS + or u*dS
a0 e

in the present statically determined case, can be simplified as it results ér = 0.
Therefore we have

G=— / t*v dS (38)
o0

and this term can be evaluated by means of the sole boundary data.

Values of the gap function have been obtained for a mesh of internal points
of the specimen with the vertical flaw. The boundary displacement field was
given by the difference v =t —u between the experimentally mapped displace-
ment field of the specimen without flaws and the one of the specimen with the
vertical flaw.

15cm

3cm

(xh)=(1,0.5)
(xh)=(14,0.5)

Figure 13.
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In fig. 13 a plot of the function G as a function of the difference field v
is represented. The highest values of the function G identify the position and
the shape of the inner fracture and validate the proposed boundary integral
approach.

6. MATHEMATICAL CONSIDERATIONS

At the end of our discourse the following question naturally arises: must
the comparison between the boundary data necessary for the identification
procedure regard the whole boundary of the bodies or is it possible to limit
the analysis to a suitable sub-region of the boundary itself?

On account of the local uniqueness property of the elastic equilibrium
problems we can affirm that the analysis might be indeed limited to a suitable
sub-region of the boundary. In fact the solutions of the problem of elastic
equilibrium for the same solid subject to distinct load and constraint conditions
always differ on every sub-domain of the volume or the boundary.

This local uniqueness property can be stated by means of the following
theorem [Markusevic, 1988; Michajlov, 1984; Smirnov, 1982]:

Kovalewskaja’s theorem. If the data of the problem (1.1), (1.2) and
(1.3) are all analytical and the boundary surface of V is regular and simply
connected in E3, then a neighbourhood I, of any point x €8V will exist such
that in I, N OV the elastic equilibrium problem admits a unique analytical
solution.

From the previous theorem it derives that a sub-domain V; of V which
contains the boundary surface and presents an unique analytical solution al-
ways exists. Moreover for the analytical functions the following fundamental
property holds true: if two analytic functions coincide in a sub-domain Vi of
V, they coincide in V. The local uniqueness of the elastic equilibrium problem
follows straightforwardly.

The following theorem [Almansi, 1907] supports and widen the previous
results:

Almansi’s theorem. Let an elastic body V with null volume forces be
loaded on the sole free boundary dV;; if the displacement and the tractions
are zero for all the points of a region 0V, of the free boundary, then the
displacements, the deformations and the stresses result identically zero in V
as well.
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This theorem naturally embeds the local uniqueness principle: if two dis-

placement fields coincide on any region 9V, of the loaded boundary and the
tractions do the same as well, then the displacement fields coincide all over
the body.

It seems so possible to limit our attention to particular boundary subsets,

which we call “identification windows”. It seems also obvious that these “win-
dows” must be carefully chosen, so that the gap functional can give useful
information, but these considerations exceed the limits of the present study.

(4]
[5]
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