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1. INTRODUCTION

A fault-tolerant system is characterized by its capability to return auto-
matically to an operational state after a fault. When such system is highly
available, the failure and recovery rates have very different orders of mag-
nitude. Consequently, the continuous time Markov chain (CTMC) used to
study the behavior of this system is generally stiff and often have a large state
space. So the evaluation of stationary quantitative performances, by simu-
lation, comes back to simulate the stationary behavior of a stiff and large
Markov chain. With a standard Monte Carlo simulation, we are confronted
to a time complexity problem. There are many variance reduction techniques
which answer, each in it’s manner, to this problem. The Importance Sampling
(IS) is a variance reduction technique which is well adapted to the simulation
of the embedded discrete time Markov chain (EMC). This technique encour-
age the rare event (i.e. rare transitions of the EMC) and consequently allows a
reduction in the time of simulation with respect to the standard Monte Carlo
simulation. But for a stiff and large EMC, the simulation spends a very long
time before reaching a state from where there is a possible rare transition.
So that the simulation turns a long time before the intervention of the IS
technique.

In this paper, we propose a new approach, based on the IS and on a distance
technique, which reduces considerably this time.

The paper is organized as follows : In section 2, we define the model and the
stationary performance measure to simulate. The philosophy and the strategy
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of IS is presented in section 3. Our new approach is discussed in section 4.
In section 5, we study a numerical example which shows the usefulness of the
proposed approach. A summary is given in the last section.

2. MODEL AND STATIONARY PERFORMANCE

We consider an irreducible CTMC X = {X, , t € R"} with finite state
space E and transition rate matrix A = (a;;). The set E can be written as
E = OUF where O and F are the operational and the nonoperational state
space respectively. We define

aOF={2€0/3]€F : pij>0}
where o

Dij = rﬁ'l"l{z#]}(z,.y) ) 7'7.7 €EFE
and P = (p;;)i jek is the transition matrix of the EMC of X and 1 4(z) is the
indicator function of the set A. We denote the EMC by Z = {Z, ; n € N}.
The main aim of this work is to simulate the stationary performance measure
of the model X by simulating Z. We assume that X starts in the perfect state
ip (i.e. all components of the system are operational). Letting the sequence
(7;) such that :

To=inf{n >0 | Z, =140}
'ri=inf{n>7'i—1 | Zn—':io} , 1 >0

then the process Z is regenerative and each 7; is a regeneration point for
Z .Now, we denote by (m;);cp the stationary probability distribution of X
and consider that a realization is a sequence of states which starts at iy and
finishes when Z becomes to 7. Our focus is concentrated on the simulation
of the quantity E[f(Z)], where f is a function of state and the notation E[.]
is used for expectation. Assuming that E[|f(Z)|] < 400, this quantity can
be expressed as a ratio of expectations. This can be seen in the following
proposition.

PROPOSITION. If 3", | f(§)| m; < +o0 then
E (75 £(Z)h(Z4)]
f@)m =
IO = ]

where h(i) = (g is the holding time in state i and (Zo, ..., Zr,-1) is the first
regenerative cycle of Z.
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The proof, which is based on the regenerative property of Z, is given in
Chung (1960).

3. IMPORTANCE SAMPLING (IS)

For simplicity, we present the philosophy of IS through the simulation of
the quantity 8 = E[f(U)] where U is a random variable with probability
density ¢, and f is a function of state, such that E[| f(U)|] < +oc0 : Let V'
another random variable with probability density ¢, such that :

po(z) =0 if  pu(z)=0

wu(x) >0 if  pu(z) >0
The quantity 6 can be written :

0 =E[f(U)] =E[f(V)R(V)] where R(z)= ‘;—“%

It is proved in Nasroallah (1991) that for z such that R(z) << 1, the sim-
ulation of E[f(V)R(V)] leads to a reduction variance with respect to the
simulation of E [f(U)]. It means that if we take ¢, such that ¢,(z) > p.(z)
(i.e. we increase the chance of occurrence of by sampling from ¢, when it
is rarely sampled from ¢, ), then we reduce the variance of the estimator of
6 = E[f(V)R(V)].

Now let us give some remarks and how IS procedure is used, in Conway and
Goyal (1987), to simulate the model presented in section 2.

Remarks. 1. IS is useful only when there are rare events in simulation.

2. The IS procedure, as used in Conway and Goyal (1987), is applied only
when the simulated model Z enters in a state i € 90p.

3. If 6 can be written as a ratio of expectations, like in the proposition
above,then IS can be used to simulate the numerator and the denominator
independently. It is shown in Heidelberger et al. (1987) that this technique is
better than IS, and it is called MSIS (Measure Specific Importance Sampling).

The stiffness of the model X implies that the fault state space F' is rarely
visited by Z. So that when Z is in a state i € 00 and if p is the probability
that Z makes a transition to F', the IS strategy is based on the choice of a
new probability «, with a > p, which favors the occurrence of the rare event
(i.e. transition to F'). In this case, the estimation is weighted by the ratio



28 A. NASROALLAH

p/a. It is important to note that IS is applied only when the model Z enters
in a state ¢ € 0. But, a large and stiff Markovian model stays in O\dOp,
where O\0Ofr = {i € O ; i ¢ 00F}, for a large number of transitions before
it reaches O from where IS is used. For reducing this number of transitions
without affecting the estimates, we propose the SDT algorithm.

4. SIMULATION WITH A DISTANCE TECHNIQUE (SDT)

The idea of SDT is to apply the MSIS procedure from any state ¢« € O and
not only from ¢ € dOfr. The probability « is then adapted to this situation.
It is computed from an analogy with a birth and death process. Let present
now some preliminaries :

If I and J are two sub-sets of E/, we define the distance from I to J by the mini-
mum number of transitions to reach J from I. This distance is denoted d(I, J).
If we consider the sequence (F})g>o defined by Fi, = {i € O / d({i}, F) = k}
(i.e. Fj is the set of states which are at distance k far from F), then it is
simple to see that for an irreducible Markov chain, it exists m € N such that
E = ;- Fy, where O = J;-, Fy, and F = F,,.

Now consider F}, like a state of a birth and death process for which we fix the
transition probability from Fj to Fj;_; equal to « for £ = 1,...,m. The tran-
sition probability from Fj to Fi.; is then equal to 1l —a for k =1,....m — 1.
With this assumption, the transition graph of Z can be seen as a transition
graph of a birth and death process with an absorbed state as described in

Figure 1.
[0
«
l-a

Figure 1 : Transition rate Diagram of a birth and death process with an
absorbed state.

F is considered as an absorbed state because when in F, we stop the

reduction variance procedure until the model comes back to the regenerative
state 79. A stiff model returns quickly to ,.
We take o as the minimum chance for Z to make transition in a state which
decreases the distance between the current state and F'. This choice increases
the chance of occurrence of paths visiting F'. So if i € F}, is the current state,
then the transition probability from i to Fj_; is taken to be

p; =max(a, > pij)
JEF,_1
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Now using balanced equations for the process in Figure 1, we have
ZL'():O, wk=axk+1+(1—a)wk_1+1, ISkSm—l

where z;, is the minimum number of transitions to reach Fy = F from the
state Fy. Thus for a given z,,, we can approximate o by numerical analysis
procedures. It is clear that z,, depends on the stiffness of the model and
on Card(O). By taking a simple form of z,,, for example z,, = yCard(O)
where 7 is a scalar depending on the stiffness of the model, SDT will produce
a significative variance reduction when the model is large. The illustration
of the capabilities of SDT approach can be shown through an example of
simulation of a fault-tolerant system which is highly available and large.

5. NUMERICAL EXAMPLE

Let consider a fault-tolerant system which is modelled by a CTMC. His
transition rate diagram is given in Figure 2.

O OO @
K—@ - @ - O—@
O K0 @

Figure 2 : Transition rate diagram of a CTMC with 101 states

We have Card(E) = 101, O = {0,1,...,90}, F = {91,92,...,100} and
00r = {88,89,90}. When in O, the failure and repair rates are Ao and po
respectively. In F', these rates are Ar and pp respectively. Between 00p and
F, the failure and repair rates are A and p respectively.

The performance measure which we simulate is the steady-state unavailability
of the model (i.e. the probability of being in F' : 6 = 3, p f(i)m;, where
f(@) = 1p(i)).

We take Ao = 0.5, po =1, A\p = 0.5, up =2, A = 1072 and p = 3. For these
values, # = 3 x 107!2 which is computed by a SUN computer with a SPARC
processor.

This model is simulated by the two algorithms : MSIS and SDT. For MSIS we



30 A. NASROALLAH

have fixed 0.999 as the new probability to favors the rare event. This value is
taken to be the best one in Heidelberger et al. (1987). The parameter v, for
SDT, is taken to be equal to 10.

Results and summary statistics are illustrated in Table 1 for MSIS and Table
2 for SDT as follows : For each table, the first column contains the CPU time,
the second one contains an estimation  of 6, scaled by the factor 10'2, and
the last one contains the half-width of 99% confidence interval (hwci) scaled
by the factor 103.

CPU time || 6 x 102 | hwei x 1013

30645 51.21 1319.2
46212 33.72 868.7
67230 23.57 607.12
100899 15.73 405.23

Table 1 : Evolution of the unavailability estimation
and the hwci with respect to the CPU time for the MSIS algorithm.

CPU time || 6 x 10'2 | hwei x 103
969 3.08 1.10
1445 3.10 1.56
1931 3.10 1.28
2396 3.09 1.15
2839 3.10 1.03

28297 3.09 0.34

Table 2 : Evolution of the unavailability estimation 8
and the hwci with respect to the CPU time for the SDT algorithm.

We remark in Table 2 that for moderate CPU times, we get good esti-
mations of § with acceptable confidence intervals. For a simple comparison
between MSIS and SDT, we see for example the first line in Table 1 and the
last line in Table 2 : for 28297 CPU, we get a good estimation = 3.09 x 1012
with hwei = 0.34 x 1073 by the SDT algorithm, and for 30000 CPU, we get
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6 = 51.21 x 107! with hwci = 1319.2 x 10~'% by the MSIS algorithm. The
improvement factor in confidence interval (hwci[MSIS]/hwci[SDT]) is then
greater than 3915.

6. SUMMARY

In this paper, we have presented an algorithm called SDT which is based
on the MSIS technique. It allows to simulate stationary performances of a
large class of Markovian models (i.e. stiff and large Markovian models). This
new approach, which takes account of the Markov chain graph’s structure,
reduces significantly the time spent by simulation in the operational state (i.e.
sub-set of state space).
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