When a Composition Algebra is Barrelled?

JORGE BUSTAMANTE GONZÁLEZ AND RAÚL ESCOBEDO CONDE

B. Univ. Autónoma de Puebla, FCFM, Avda. San Claudio y 14 sur, CP 72570, Puebla, PUE, México, e-mail: jbusta fcfm.buap.mx

(Research paper presented by J.M.F. Castillo)

AMS Subject Class. (1991): 46A08, 46H20, 54C10

Received April 24, 1997

In this paper, X and Y will denote completely regular Hausdorff spaces, C(X) is the family of all real-valued continuous maps $f: X \to \mathbb{R}$. A composition algebra A_{φ} on X is given by a continuous map $\varphi: X \to Y$ in such a way that

$$A_{\varphi} = \{ g \circ \varphi \colon g \in C(Y) \}.$$

All functional spaces are endowed with the compact-open topology.

Here we are concerned with the following question: given X, Y and φ , when A_{φ} in a barrelled space?, that is, when the barrels (closed absorbent absolutely convex sets) in A_{φ} are a base of neighborhoods of the null function? If X = Y and φ is the identity map, this problem was solved independently by L. Nachbin and T. Shirota (see [1], Theorem 2.5.-1).

Recall that a subset $Q \subset Y$ is C-embedded (in Y) if every $f \in C(Q)$ can be extended to a function in C(Y).

Given a family A of functions $f\colon X\to\mathbb{R}$, and $Q\subset X$, Q is said to be A-bounding if for each $f\in A$, f(Q) is bounded in \mathbb{R} . X is called a NS (Nachbin-Shirota) space if each C(X)-bounding set is relatively compact.

A map $\varphi \colon X \to Y$ is semiproper if for each compact subset $H \subset Y$, there exists a compact subset $K \subset X$ such that $\varphi(K) = H \cap \varphi(X)$. Recall that $P \subset X$ is φ -saturated if $P = \varphi^{-1}(\varphi(P))$ and φ is superproper if for each φ -saturated and A_{φ} -bounding subset $Q \subset X$, there exists a compact subset $K \subset X$ such that $\varphi(Q) \subset \varphi(K)$. We know that not all semiproper map are superproper and if $\varphi(X)$ is C-embedded in Y and is φ superproper, then φ is semiproper (see remark bellow).

Our main result state as follows:

THEOREM. Let X and Y be completely regular Hausdorff spaces, $\varphi \colon X \to Y$ a continuous map such that $\varphi(X)$ is C-emmbedded in Y. The following assertions are equivalent:

- (i) A_{φ} is barrelled;
- (ii) φ is a superproper map;
- (iii) $\varphi(X)$ is a NS space, $\varphi(X)$ is closed in Y and φ is semiproper.

Remark. Under the hypothesis of the theorem above define a homomorphism

$$A \colon C(Y) \to A_{\varphi}$$

by $Ag = g \circ \varphi$. J.G. Llavona and J.A. Jaramillo ([3], 1.19) proved that if X is Lindelöf, $\varphi(X)$ is C-embedded in Y and A_{φ} is barrelled, then $\varphi \colon X \to Y$ is semiproper and $\varphi(X)$ is closed in Y. They also proved ([3], 1.13) that A is an open map if, and only if, $\varphi(X)$ is closed in Y and $\varphi \colon X \to Y$ is semiproper. We see the relevance of the Nachbin-Shirota condition by comparing this last result with the theorem above, because if we take X = Y and φ the identity map then, of course, A is open, but $A_{\varphi} = C(X)$ need not to be barrelled.

The proof of (ii) implies (iii) is inspired in proposition 1.19 of [3]. The proof of (ii) implies (i) is a modification of the ideas used in [1] in order to prove the Nachbin-Shirota theorem.

Proof. [(i) implies (ii)] Fix a φ -saturated and A_{φ} -bounding subset $Q \subset X$. The set

$$V_Q = \{ f \in A_{\varphi} \colon f(Q) \subset [-1, 1] \}$$

is a barrel (in A_{φ}). Then, there exist a compact set $K \subset X$ and $0 < \epsilon < 1$, such that

$$\{f \in A_{\omega} \colon f(K) \subset (-\epsilon, \epsilon)\} \subset V_{Q} .$$

Therefore, $\varphi(Q) \subset \varphi(K)$. Indeed, suppose to the contrary that there exists $q_0 \in Q$ such that $\varphi(q_0) \notin \varphi(K)$, then there exists $g \in C(Y)$ such that

$$g(\varphi(K)) \subset (-\epsilon, \epsilon)$$
 and $g(\varphi(q_0)) > 1$.

Then, for $f = g \circ \varphi$, we have that $f \in A_{\varphi}$, $f(K) \subset (-\epsilon, \epsilon)$ and $f \notin V_Q$. This gives a contradition with (1).

Thus, φ is a superproper map.

[(ii) implies (i)] Let V be a barrel in A_{φ} . For any subset $Q \subset X$ denote $V_Q = \{f \in A_{\varphi} \colon f(Q) \subset [-1,1]\}$ and

$$Z_Q = \{ f \in A_{\varphi} \colon Q \subset Z(f) \},\$$

where $Z(f) = \{x \in X : f(x) = 0\}.$

Following the proof of Nachbin-Shirota theorem in [1] pp. 94-96, it is not difficult to find some d > 0 such that $dV_X \subset V$ and $\frac{d}{2}V_S \subset V$ for every $S \subset X$ such that $Z_S \subset V$.

Now, for each $\lambda \in A_{\varphi}^*$ (the topological dual of A_{φ}) set $\hat{\lambda} = \lambda \circ A \in C(Y)^*$, that is $\hat{\lambda}(g) = \lambda(g \circ \varphi)$. Then $\hat{\lambda}$ is a continuous linear functional on C(Y) with support Supp $(\hat{\lambda})$ (see [1], 2.4-8). Set $S_{\lambda} = \varphi^{-1}(\operatorname{Supp}(\hat{\lambda}))$. It is easy to prove that S_{λ} is a φ -saturated set in X such that:

- (a) If $f \in A_{\varphi}$ and $S_{\lambda} \subset Z(f)$, then $\lambda(f) = 0$, and
- (b) If $Q \subset X$ and $\lambda(Z_Q) = \{0\}$, then $S_{\lambda} \subset Q$.

Let $V^{\circ} = \{\lambda \in A_{\varphi}^* : |\lambda(f)| \leq 1, f \in V\}$ be the polar of V and $K_V = \operatorname{cl}_X(\bigcup_{\lambda \in V^{\circ}} S_{\lambda})$, then $Z_{K_V} \subset V$ (we have used the bipolar theorem).

Let us prove that K_V is an A_{φ} -bounding set. Suppose to the contrary that there exists $f \in A_{\varphi}$ such that $f(K_V)$ is an unbounded set in \mathbb{R} . For n=1,2,... set $U_n=\{x\in X\colon |f(x)|>n\}$. It is clear that $\{U_n\}$ is a non increasing family of open subsets of X such that $\bigcap_n U_n=\emptyset$. Moreover, for $n=1,2,...,K_V\bigcap U_n\neq\emptyset$. Thus, for n=1,2..., there exists $\lambda_n\in V^\circ$ such that $U_n\bigcap S_{\lambda_n}\neq\emptyset$. Taking into account property (b) above, if $\lambda_n(Z_{X\setminus U_n})=\{0\}$, then $S_{\lambda_n}\subset X\setminus U_n$, which leads to a contradiction. Therefore, for n=1,2,..., there exists $f_n\in A_{\varphi}$ such that $(X\setminus U_n)\subset Z(f_n)$ and $\lambda_n(f_n)\neq 0$.

There exists $g \in C(Y)$ such that $f = g \circ \varphi$. Set

$$T_n = \{ y \in Y : |g(y)| \ge n \}, \quad n = 1, 2, \dots$$

For $m = 1, 2, ..., \varphi(S_{\lambda_m})$ is a compact set, then

$$\{n \in \mathbb{N}: T_n \cap \varphi(S_{\lambda_m}) \neq \emptyset\}$$

is a finite set. On the other hand, since $\varphi(\operatorname{cl}_X U_n \cap S_{\lambda_m}) \subset T_n \cap \varphi(S_{\lambda_m})$, it holds that for m = 1, 2, ...,

$$\{n \in \mathbb{N} : \operatorname{cl}_X U_n \bigcap S_{\lambda_m} \neq \emptyset\}$$

is finite set. Hence, for some subsequences which we still denote U_n and S_{λ_m} we may suppose that, for m=1,2,..., and n>m, $\operatorname{cl}_X U_n \cap S_{\lambda_m}=\emptyset$. Fix a sequence of real numbers $\{\alpha_n\}$ such that

$$\lambda_m(f) = \sum_{n=1}^{\infty} \alpha_n \lambda_m(f_n) = \alpha_m + \sum_{n=1}^{m-1} \alpha_n \lambda_m(f_n) = m.$$

There exits $\alpha > 0$ such that $f \in \alpha V$ (V is an absorbent set). Taking into account that $\lambda_m \in V^{\circ}$, we have that

$$\frac{1}{\alpha}m = \lambda_m \left(\frac{f}{\alpha}\right) \ge 1$$
, for $m \ge 1$.

The inequality above gives a contradiction $(\alpha^{-1} f \in V \text{ and } \lambda_m \in V^{\circ})$. We have proved that K_V is an A_{φ} -bounding set.

Since K_V is a φ -saturated A_{φ} -bounding subset of V such that $\frac{d}{2}V_{K_V} \subset V$, then there exists a compact subset $H \subset X$, such that $\varphi(K_V) \subset \varphi(H)$. It follows that

$$\left\{ f \in A_{\varphi} \colon f(H) \subset \left[-\frac{d}{2}, \frac{d}{2} \right] \right\} \subset \frac{d}{2} V_{K_V} \subset V.$$

Then, V is a neighborhood of zero in A_{φ} .

[(ii) implies (iii)] Denote by νY the Hewitt-Nachbin realcompatification of Y (see [2], 8). We can consider that $\varphi(X) \subset Y \subset \nu Y$. Set $M = \operatorname{cl}_{\nu Y} \varphi(X)$. Since $\varphi(X)$ is C-embedded in Y, $M = \nu(\varphi(X))$. Set $\hat{\varphi} = i \circ \varphi$, where $i \colon \varphi(X) \to M$ is the natural embedding. Notice that φ and $\hat{\varphi}$ give the same saturated sets in X and that $A_{\varphi} = A_{\hat{\varphi}}$. Thus $\hat{\varphi}$ is a superproper map. Define $\hat{A} \colon C(M) \to A_{\varphi} = A_{\hat{\varphi}}$ by $\hat{A} = g \circ \hat{\varphi}$.

If $H \subset M$ is a compact set and

$$V_H = \{ f \in C(M) : \sup_{x \in H} |f(x)| \le 1 \},$$

then $\hat{A}(V_H)$ is a barrel in $A_{\hat{\varphi}}$. Therefore, $\hat{A}(V_H)$ a neighborhood of zero in $A_{\hat{\varphi}}$ (see (ii) implies (i)). Thus, \hat{A} is an open map. Since φ is a continuous map, it is easy to prove that \hat{A} is continuous map. That is, \hat{A} is a topological isomorphism.

Now, we know that $\hat{\varphi}(X) = M$ and $\hat{\varphi} \colon X \to M$ is semiproper map (see [3], 1.14). Therefore, $\varphi(X)$ is closed in Y and φ is semiproper.

On the other hand, if $J \subset \varphi(X)$ is a $C(\varphi(X))$ -bounding set and $K = \varphi^{-1}(J)$, then K is a φ -saturated A_{φ} -bounding set. Therefore, there exists a

compact set $H \subset X$ such that $\varphi(K) \subset \varphi(H)$. Since φ is continuous map, $\varphi(H)$ is compact subset of Y. Taking into account that $\varphi(X)$ is closed in Y and $J \subset \varphi(H)$, then J is relatively compact subset of $\varphi(X)$.

The arguments above say that $\varphi(X)$ is a Nachbin-Shirota space.

[(iii) implies (ii)] Fix a φ -saturated and A_{φ} -bounding subset $Q \subset X$. Denote the closure of $\varphi(Q)$ in $\varphi(X)$ by H. Taking into account that $\varphi(X)$ is a Nachbin-Shirota space and $\varphi(Q)$ is a $C(\varphi(X))$ -bounding set, it follows by the Nachbin-Shirota's theorem that H is a compact subset of $\varphi(X)$. Therefore, H is a compact subset of Y. On the other hand, since φ is a semiproper map, then there exists a compact set $K \subset X$ such that $\varphi(K) = H \cap \varphi(X) = H$. Since $\varphi(Q) \subset H = \varphi(K)$, φ is a superproper map.

REFERENCES

- [1] Beckenstein, E., Narici, L. and Suffel, C., "Topological Algebras", North Holland Math. Studies, 24, Amsterdam, 1977.
- [2] GILLMAN, L., JERISON, M., "Rings of Continuous Functions", Van Nostrand, New Jersey, 1960.
- [3] LLAVONA, J.G., JARAMILLO, J.A., Homomorphisms between algebras of continuous functions, Can. J. Math., Vol. LXI (1) (1989), 132-162.