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In this paper, X and Y will denote completely regular Hausdorff spaces,
C(X) is the family of all real-valued continuous maps f : X — R. A composi-
tion algebra A, on X is given by a continuous map ¢: X — Y in such a way
that

A, ={goyp: g C(Y)}.

All functional spaces are endowed with the compact-open topology.

Here we are concerned with the following question: given X, Y and ¢,
when A, in a barrelled space?, that is, when the barrels (closed absorbent
absolutely convex sets) in A, are a base of neighborhoods of the null function?
If X =Y and ¢ is the identity map, this problem was solved independently
by L. Nachbin and T. Shirota (see [1], Theorem 2.5.-1).

Recall that a subset Q C Y is C-embedded (in Y) if every f € C(Q) can
be extended to a function in C(Y').

Given a family A of functions f: X — R, and Q@ C X, @ is said to
be A-bounding if for each f € A, f(Q) is bounded in R. X is called a NS
(Nachbin-Shirota) space if each C(X)-bounding set is relatively compact.

A map ¢: X — Y is semiproper if for each compact subset H C Y, there
exists a compact subset K C X such that ¢(K) = H[)p(X). Recall that
P C X is p-saturated if P = ¢~ !(p(P)) and ¢ is superproper if for each
p-saturated and A, -bounding subset Q C X, there exists a compact subset
K C X such that ¢(Q) C ¢(K). We know that not all semiproper map are
superproper and if ¢(X) is C-embedded in Y and is ¢ superproper, then ¢ is
semiproper (see remark bellow).

Our main result state as follows:

19



20 J. BUSTAMANTE AND R. ESCOBEDO

THEOREM. Let X and Y be completely regular Hausdorff spaces, ¢: X —
Y a continuous map such that ¢(X) is C-emmbedded in Y. The following
assertions are equivalent:

(i) A, is barrelled;
(ii) ¢ is a superproper map;

(iii) ¢(X) is a NS space, ¢(X) is closed in Y and ¢ is semiproper.

Remark. Under the hypothesis of the theorem above define a homomor-

phism '
A:C(Y)— A,

by Ag = go ¢. J.G. Llavona and J.A. Jaramillo ([3], 1.19) proved that if X
is Lindeldf, ¢(X) is C-embedded in Y and A,, is barrelled, then ¢: X =Y is
semiproper and ¢(X) is closed in Y. They also proved ([3], 1.13) that A is an
open map if, and only if, p(X) is closed in Y and ¢: X — Y is semiproper.
We see the relevance of the Nachbin-Shirota condition by comparing this last
result with the theorem above, because if we take X =Y and ¢ the identity
map then, of course, A is open, but 4, = C(X ) need not to be barrelled.

The proof of (ii) implies (iii) is inspired in proposition 1.19 of [3]. The
proof of (ii) implies (i) is a modification of the ideas used in [1] in order to
prove the Nachbin-Shirota theorem.

Proof. [(i) implies (ii)] Fix a ¢-saturated and A,-bounding subset @ C X.
The set

Vo={feA,: f(Q) C[-1,1]}

is a barrel (in A,). Then, there exist a compact set K C X and 0 < € < 1,
such that

(1) {fed,: f(K)C (-6} C Vo

Therefore, p(Q) C ¢(K). Indeed, suppose to the contrary that there exists
go € @ such that ¢(qo) ¢ ¢(K), then there exists g € C(Y') such that

9(p(K)) C (=€) and g(p(g)) > 1.

Then, for f = g o ¢, we have that f € A,, f(K) C (—¢,¢€) and f ¢ Vo. This
gives a contradition with (1).
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Thus, @ is a superproper map.
[(ii) implies (i)] Let V be a barrel in A,. For any subset Q C X denote
Vo={f€A,: f(Q) Cc[-1,1]} and '

Zo={f€A,:QC Z(f)}

where Z(f) = {z € X: f(z) = 0}.

Following the proof of Nachbin-Shirota theorem in [1] pp. 94-96, it is not
difficult to find some d > 0 such that dVx C V and %Vs C V for every S C X
such that Zg C V.

Now, for each A € A7, (the topological dual of A,,) set A=XoAeCY),

that is A(g) = A(gop). Then ) is a continuous linear functional on C(Y) with

support Supp (A) (see [1], 2.4-8). Set Sy = ¢~ !(Supp (A)). It is easy to prove
that Sy is a p-saturated set in X such that:

(a) If f € A, and Sy C Z(f), then A(f) =0, and
(b) If @ C X and A(Zg) = {0}, then S, C Q.

Let V° = {A € A,: [X(f)] £ 1, f € V} be the polar of V and Ky =

clx( U Sy), then Zg, C V (we have used the bipolar theorem).
AEVe

Let us prove that Ky is an A,-bounding set. Suppose to the contrary
that there exists f € A, such that f(Ky) is an unbounded set in R. For
n =12, . st U, ={z € X:|f(z)] > n}. Itis clear that {U,} is a non
increasing family of open subsets of X such that (YU, = (. Moreover, for

n=12,.., Ky U, # 0. Thus, for n = 1,2..., there exists A, € V° such that
U,.N Sy, # 0. Taking into account property (b) above, if \,(Zx\v,) = {0},
then Sy, C X \ U,, which leads to a contradiction. Therefore, for n = 1,2, ..,
there exists f, € A, such that (X \ U,) C Z(f,) and A,(f.) #0.

There exists g € C(Y') such that f = gop. Set

T,.={yeY:|g(y) >n}, n=12,..

For m = 1,2, ..., ¢(Sy,.) is a compact set, then

{n e N: T,()(5x,) # 0}

is a finite set. On the other hand, since p(clxU,NSy,.) C T.N@(Sy..), it
holds that for m = 1,2, ...,

{n € N: chUnﬂS,\m # 0}
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is finite set. Hence, for some subsequences which we still denote U,, and S,
we may suppose that, for m = 1,2,..., and n > m, clxU,NS,, = 0. Fix a
sequence of real numbers {a,} such that

Zan fn —am Zan fn =

There exits & > 0 such that f € aV (V is an absorbent set). Taking into
account that A,, € V°, we have that

lm=)\m (i) >1, form>1.
e o'
The inequality above gives a contradiction (a™'f € V and A, € V°). We
have proved that Ky is an A,-bounding set.
Since Ky is a @-saturated A,-bounding subset of V such that ¢V, C V,
then there exists a compact subset H C X, such that o(Kyv) C o(H). It
follows that

{sreasrmc|-55]}cgvecv

Then, V is a neighborhood of zero in A,,.

[(ii) implies (iii)] Denote by vY the Hewitt-Nachbin realcompatification of
Y (see [2], 8). We can consider that p(X) C Y C vY. Set M = cl,yp(X).
Since p(X) is C-embedded in Y, M = v(o(X)). Set ¢ = io ¢, where
i: o(X) —» M is the natural embedding. Notice that ¢ and ¢ give the same
saturated sets in X and that A, = A;. Thus ¢ is a superproper map. Define
A:O(M)— A,=A, by A=go¢.

If H C M is a compact set and

Ve ={f € C(M): Suplf I <1},

then A(Vy) is a barrel in A;. Therefore, A(Vy) a neighborhood of zero in
A, (see (ii) implies (i)). Thus, A is an open map. Since ¢ is a continuous
map, it is easy to prove that A is continuous map. That is, A is a topological
isomorphism.
Now, we know that ¢(X) = M and ¢: X — M is semiproper map (see
[3], 1.14). Therefore, ¢(X) is closed in Y and ¢ is semiproper.
On the other hand, if J C ¢(X) is a C(p(X))-bounding set and K =
~1(J), then K is a p-saturated A,-bounding set. Therefore, there exists a
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compact set H C X such that ¢(K) C @(H). Since ¢ is continuous map,
¢(H) is compact subset of Y. Taking into account that ¢(X) is closed in ¥V
and J C p(H), then J is relatively compact subset of ¢(X).

The arguments above say that ¢(X) is a Nachbin-Shirota space.

[(iii) implies (ii)] Fix a ¢-saturated and A,-bounding subset @ C X. De-
note the closure of ¢(Q) in ¢(X) by H. Taking into account that ¢(X) is a
Nachbin-Shirota space and ¢(Q) is a C(p(X))-bounding set, it follows by the
Nachbin-Shirota’s theorem that H is a compact subset of ¢(X). Therefore,
H is a compact subset of Y. On the other hand, since ¢ is a semiproper map,
then there exists a compact set K C X such that p(K) = HNe(X) = H.
Since ¢(Q) C H = ¢(K), @ is a superproper map. [
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