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In this paper we give a characterization of the multivariate normal distri-
bution through the conditional distributions in the most general case, which
include the singular distribution. In fact, the necessary and sufficient condi-
tion for the joint distribution of two random vectors X and Y to be normal is
that X must be normal and also the conditional distribution of Y when X =z
must be normal with its mean vector as an affine transformation of z and the
dispersion matrix constant. The necessary condition in the nonsingular case
is well known ([1], [2], [3]). Muirhead ([4]) proves the necessary condition for
the most general case using generalized inverses. '

The originality of this paper lays on the proof of the sufficient condition in
the most general case, including the singular case. For making this proof the
use of the characteristic function will be needed. In the nonsingular case the
proof could be made with the density function.

The nonsingular normal distribution may be defined through the density
function. For the general case, including the singular one, the characteristic
function may be used for its definition.

Let ¥ be a real, symmetric and nonnegative definite matrix n x n and let
p = (p1,---,4,)T be a vector of real components. It will be said that the
random vector X = (Xi,...,X,)T has a multivariate normal distribution of
mean vector p and covariance matrix 3 if its characteristic function is,

o(t) = E[exp (itTX)] = exp (itTu - %tTZt).

We will write X = N, (¢, Z). It may be proved that the mean and the co-
variance matrix are g and ¥. The multivariate normal distribution is then
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concentrated on an affine subspace of ®”, whose dimension is the rank of X.
In the nonsingular case the density function is,

(ol ) = exp[—5 (@ — WS e )], s ER

1
(2m)™ det 2
Some interesting properties are,

THEOREM 1. Let X = N, (ux,Xx) and Y = AX, where A is a matrix
k xn. Then the random vector (Yy,...,Y;)" has a multivariate normal distri-
bution with mean vector uy = Aux and covariance matrix Xy = AX x A”.

That is, every linear combination of the components of a multivariate nor-
mal distribution is normal. This property characterized the multivariate nor-
mal distribution and therefore it may be done as an alternative definition, that
includes the singular case.

THEOREM 2. A random vector is normal if, and only if, every linear com-
bination of the components of a multivariate normal distribution is normal.

THEOREM 3. Let X,,...,X; be independent random vectors such that
X; = No(p5,%;), 3 =1,...,k, then X; + -+ + Xi = N,(u,X), where p =
1+ -+ purand X =3, + - + Xy

The following theorem is the main result in this paper,

THEOREM 4. The two following statements hold,

1. If the random vector Z = ( ';,(
N, (i, X), where,

x Yxx Xxvy
= a,nd Y=
# (,UY) (ny 2YY>,
then the conditional distribution of Y given X has a normal distri-
bution of mean E(Y|X) = py + Bo(X — px) and covariance matrix
Yyy — ByXxy, where By is a solution of the equation Yy x = BYxx.
That is, the expectation of the conditional Y given X is an affine trans-

formation of X and the covariance matrix of the conditional of Y given
X is constant.

) has a multivariate normal distribution
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2. If X = N, (ux,2xx) and the conditional distribution of Y given X is a
s-dimensional normal distribution of mean a + BX and constant covari-
ance matrix ¥, then the joint distribution of (X,Y’) is a n-dimensional
normal distribution with n = r + s, whose mean vector and covariance
matrix are,

P Bx ) _ Hx
Ky a+ Bux
s - Yxx Yxy | _ [ Xxx Yxx BT
Y%y Zyy B¥xx Yo+ BXxxB' |’
Hence, Y shall be normal as well.

Proof. A proof of the first part of the theorem from a regression point of
view can be seen in [4].

Let us see the second part of the theorem, that is the original part of this
paper. For this we will compute the joint characteristic function of X and Y:

oxy(t,u) = Elexp(it"X +w"Y)] = E{E[exp(it" X +w"Y) | X]}
= E{exp(it" X)E[exp(iu"Y) | X]} = Elexp(it* X)py x (u)].

Since the conditional distribution of Y given X = z is N,(a + Bz, %), its
characteristic function is

. 1
Py|x=c(u) = exp [WT(G + Bz) — §UT20u],
and the characteristic function of X is

. 1
ox(t) = exp(itT/lx - §N}2xxlix)-

Therefore, the joint characteristic function of X and Y is
T .7 1 T
oxy(t,u) = E{exp[zt X +w'(a+ BX) — U EOu]}

= exp [z’uTa - %UTEO’U,]E{EXP [z(t + BTu)TX] }
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Taking into account the shape of the characteristic function of X then,
. T ]‘ T T
oxy(t,u) = exp(zu a=gu Egu)wx(t + B'u)
1
= exp [iuTa - -2—’U,T20'U, +i(t + BTu)"px
1
~3 t+ BTu)"Sxx(t + BTU)]
1

_ G P &
= explis i 25 Es),

_( t). _ | #x ) _ Hx .
= Yxx Zxy _ Yxx LxxBT
Yy Zyy BYxx Yo+ BXxxBT |’
Thus the joint distribution of X and Y is normal (r + s)-dimensional with the
mean vector and the covariance matrix given above. [

where,
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