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1. INTRODUCTION: THE PROBLEM MODEL

Given €2, open bounded regular set of R, N > 1, we consider the model
problem

b(u)y — div A(z,u, Vu) + g(x,u) = f(t,z), t>0, x€Q,
(P){ u=h, t>0, xze€df,
b (u(0,2)) =b(uo(x)), x € Q.

Before making explicit the structural assumptions on the data b, A, f, h and ug
let us mention some important special examples. Perhaps the simpler example
isthe linear heat equation

u — Au = f. (1)

So, b(s) = s, A(x,u,&) = £ and g = 0. This is a typical example of linear par-
tial differential equation of parabolic type usually considered in undergraduate
courses (see, e.g., John [31]). A modern treatment starts by introducing the
notion of weak solution or by its reformulation as an abstract Cauchy problem

on a Banach space

du

) + Au(t) = £(0)

u(0) = o,
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(see, e.g., Brezis [17]). It is well known, that one of the main results of the
stabilization theory is that if

f(tvx)—>f00(x) as t — 0o

h(t,x) — hoo(x)

in some suitable sense then the solution of the linear heat equation wu(t, )
verifies that

u(t,r) — us(x) as t— 0

in some functional space, with u., satisfying the associated stationary problem

—Alusy = foolz) in Q
{uoo = he on 0f2, (2)

(the linear diffusion equation). Notice that problem (2) is also included in the
formulation (P) by making b =0, A(z,u,&) =&, g=0,f = foo and h = heo.
More in general, given a choice of b, A, g, f,h and ug leading to a special
formulation of (P), the choice of choice of b =0, A and g as before leads to
the formulation of the associated stationary problem. In this way (P) include
also stationary problems. In order to present some nonlinear examples, it is
useful to read (P) as a balance of different phenomena

b(u); —divA + g(z,u) — f(z,t) =0.
M~ Y—

O (1)

Let us make some comments on the accumulation term (I). It arises, for in-
stance, in thermal processes when the heat capacity of the medium depends on
the temperature. This is the case, e.g., when water and ice are simultaneously
present and then b(u) is a strictly increasing function having a discontinu-
ity at w = 0. This special case (called Stefan problem) requires a delicate
mathematical treatment.

In fact, as a general rule, the assumption b : R — R nondecreasing is
absolutely fundamental to formulate (P) in the class of problems of parabolic
type since otherwise the problem becomes ill posed (as, for instance, —u; —
Au = f; the backward heat equation).

This type of accumulation term (I) also arises in the theory of filtration of
a fluid in a porous media. In that case

b e C°(R), b nondecreasing,
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(see, e.g., Bear [10]). Now u(t,x) is not a temperature but the humidity of
the soil. Different choices are possible: in the study of unsaturated soils b is
assumed to be strictly increasing, as, for example, b(u) = |u|* 1. In the case
of partially saturated soils, b(u) is not strictly increasing but becomes constant
for u > u!, for some u' > 0. Notice that, in this physical framework, u > 0
and so the values of b on R™ are not relevant. The, so called dam problem,
corresponds to a limit case in which b is the Heaviside function. This choice
of b also arises in problems of a different physical context, as, for instance, the
Hele-Shaw problem or some problems arising in Iubrication theory (see, e.g.,
Bayada and Chambat [9] where many other references can be found).

Let us refer now to the diffusion and convection terms involved in (II).
The dependence of A(z,u, Vu) with respect to Vu (resp. u) leads to diffusion
terms (resp. convection terms). Some examples of relevance in the applica-
tions are commented in the following. The, so called, nonlinear heat equation
arises when the Fourier law fails and the thermal conductivity depends on the
temperature (case of many gases, lubricating fluids, etc). Then the diffusion
of heat leads to the expression

div (k(u)Vu) = AB(u) with [(s) == /0S k(o)do.

In most of the cases 5(u) grows like a power
B(u) = |u|™ tu with m > 0.

The above second order operator (sometimes written as —Au"™) also arises
in the study of filtration in porous media (D’Arcy law) with m > 1 and in
plasma physics when 0 < m < 1.

A different class of examples of nonlinear terms A (z,u, Vu) arises in the
study of non-Newtonian fluids. The study of one-directional flows of some
special fluids (as, for instance, polymer melts, suspensions, paints, animal
blood, honey, shampoo, etc.) leads to nonlinear diffusion operators of the
type

div (|Vu[P"2Vu), (denoted by A,u), for some p > 1.

Notice that if p = 2 then As = A (the linear Laplacian operator, arising in
the study of Newtonian fluids). The case 1 < p < 2 corresponds to pseudo-
plastic fluids (as, e.g., gasoline, lubricating oil, etc.) and p > 2 arises in the
consideration of dilatant fluids (as, for instance, the polar ice and glaciers,
volcano lava, etc.).
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The above two operators may become degenerate since
Au™ = div (mum_IVu) = mu™ L Au+ m(m — 1)u™ 2| Vul?.

So, if m > 1 the coefficient of Vu vanishes on the set {(¢,x): u(t,z) = 0}.
Analogously,

Apu=div (|[VuP~2Vu) = |[Vu[P2Au+ Vu - V (|VuP~?)

and when p > 2 the coefficient of Vu vanishes on the set {(¢,z): Vu(t,z) =
0}. Due to this reason the qualitative behavior of solutions of (P) may be very
different (according the assumptions on the data b, A(x,u, Vu) and g) to the
one of the solution of the linear heat equation. In fact, to show such kind of
differences is one of the main goals of these notes.

We also mention that another relevant choice of nonlinear terms A (x, u,
Vu) arises in the study of transient minimal surfaces, in which case the second
order diffusion operator is given by

. Vu
div | —— | .
V14 |Vul?
Concerning the transport or convection terms, we mention that they arise

very often in Fluid Mechanics. Usually they appear formulated in terms of an
additive term, as, for instance, in the case of the temperature in a fluid

—AB(u) + w-Vu
——— ——
diffusion convection

If the fluid is incompressible (case of liquids) then divw = 0 and so we get
—div (k(u)Vu — uw), ie., A(z,u,§) = k(u)é + uw.

Nevertheless, sometimes the convection term is not an additive term but
appears in a different form.

div (®(Vu + K(b(u)e))
where
D) =¢P%¢,e e RY and K € CHR : R).

This situation arises, for instance, in the study of turbulent flow of a fluid
through a porous medium (with e the vector indicating the main filtration di-
rection). For a general exposition on different examples of diffusion-convection
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operators, containing many other references see Diaz [20] and Diaz and de
Thelin [25].

The expression (III) represents the absorption/forcing term. The presence
of the term g(x, u)— f (¢, z) is very typical of many problems arising in reaction-
diffusion problems in Biology, Chemistry and other contexts. By writing

g(w,u) = g1(w,u) — ga(w, u),

with g1 and go nondecreasing functions, we can distinguish the term of absorp-

tion gi(z,u) (which contributes to make |u| smaller than if g; = 0) from the

one of forcing ga(z,w) (which contributes to make |u| bigger than if go = 0).
In most of the cases

gi(@,u) = Mu"Mu,  A>0,

with ¢ > 0 (the order of the reaction). Notice that if 0 < ¢ < 1, g; is not a
Lipschitz function.

Returning to the structural assumptions on the data, in the rest of the
exposition, we shall always assume that

b: R — R is continuous and nondecreasing, b(0) =0, (3)

A : QxR x RY is a Caratheodory function
(i.e., measurable in z and continuous in (u,§)),

Jp > 1 such that |A(z,u,&)| < C(ju|¥ + [¢PY), VueR,  (4)
Ve € RN with p’ = ]%, p* = NN—_pp and
(A(z,u,6) — A(z,u,6%)) - (=€) > 0,V€,6* e RN € # &7,

g is Caratheodory function and
lg(x,u)| < y(|Ju|)(1 +d(z)), d € L*(Q) and ~ strictly increasing,

f=Hh+f A elX(0,T: WH(Q), fo € L(0,T) x Q),¥T >0, (6)
h e LP(0,T: WYP(Q)) N L®((0,T) x Q),¥T > 0, (7)
up € LOO(Q).

For the sake of simplicity in the exposition, we shall deal merely with
bounded (weak) solutions
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DEFINITION 1. We say that u is a bounded weak solution of (P) if u—h €
LP(0, T : WHP(Q)) N L>°((0,T) x Q), VT > 0, and we have:

b(u); € L¥ (0,7 : W17 (Q)) and
(D)3 Jo B0y prndt + o Jo(b(u) = bluo) Juedadt = 0
Yo € LP(0,T: WyP(Q)) n W0, T : L)) with (T, ) =0,

and

fg(b(u)t,wdt + fOT Jo Az, u, Vu) - Vodzdt + fOT Jo 9(z, u)vdzdt

(id) = [T, 0)dt + [ [i, fovdadt,
Yo € LP(0,T: WyP(Q)) N L®((0,T) x ), VT > 0.

The above definition is adapted from Alt and Luckhaus [2].

In the rest of this exposition we shall consider different qualitative prop-
erties of solutions of (P) arising according the nature of the nonlinear terms
b(u), A(x,u,Vu) and g(x,u). Our plan is the following: Section 2 will be
devoted to two comparison principles which will be important tools in our
study. Two qualitative properties are presented in the rest of the exposition:
the finite extinction time property (Section 3) and the finite speed of propa-
gation property (Section 4). In both of the above sections we shall apply the
two comparison principles as well as some energy methods.

It is clear that the above presentation is far to be exhaustive. Problems
like (P) have attracted the attention of many specialists in the last forty years
(perhaps the earliest mathematical paper on this subject was [38]). In conse-
quence, many other very interesting qualitative properties are today available
in the literature. The present notes only pretend to be an elementary intro-
duction.

2. TwWO USEFUL TOOLS

2.1. INTRODUCTION. The study of several qualitative properties for so-
lutions of model problem (P) will be carried out thanks to some useful tool:
the comparison principles.

The most popular comparison principle has a pointwise nature and usually
holds for elliptic and parabolic second order equations (as well as for first order
hyperbolic equations). A first statement of such a principle is the following:
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THEOREM 1. (Pointwise comparison principle) Let ( f, h,ug) and (f, h, Uo)
be two set of ordered data, i.e., such that

F<f, h<h and wuy<Tp,

in their respective domains of definition. Let u and u be (any) solutions of
(P) corresponding to (f, h,uo) and (f, h,ug) respectively. Then

u(t,z) <u(t,x), foranyt >0 anda.e. z € Q.

In the case of linear problems, this property is a trivial consequence of the
maximum principle (in fact, it suffices to assume ( f.h, up) = (0,0,0) and so
u =0). The first (general) result for linear equations seems to be due to Paraf
in 1892 (later generalizations where due to Picard, Lichtenstein and, finally,
Hopf (in 1927) (see details in the book Gilbarg and Trudinger [30]).

It is clear that for the nonlinear case some conditions on b, A and g are
needed (notice that the pointwise comparison principle implies the uniqueness
of solutions). This topic is still under investigation (see the series of works by
Ph. Benilan, J. Carrillo and others). Here we shall recall a particular result
(of a short proof) stated in terms of an estimate for a suitable expression.

The second tool refers to another comparison principle, but this time, of a
different nature. We can call it as the symmetrized mass comparison principle.
The process of symmetrization need to be carefully presented. We start by the
symmetrization of the domain Q: Given €, an open bounded set of RY, the
symmetrized version of {2 is the ball centered at the origin having the same
measure than €. Let us call Q* to this ball. The condition m(€2) = m(Q*) has
a relation with the isoperimetric inequality

1N
L>NwY AN 8)
where L is the lenght of 9Q (or m(952)), A is the area of 2 (or m(2)) and
wy is the area of the unit ball of RY (i.e., wy = m(S"™1)).

In (8) the equality holds if and only if € is a ball. This was a first noted by
Dido de Cartago (850 B.C.) (in R? the circles are the domains with fixed area
having a longer perimeter). Rigorous proofs of (8) are due to Steiner (1882),
Schwarz (1890) and Schmidt (1939).

The second step of the process of symmetrization consists in the
symmetrization of data f and ug. We shall use the notion of the decreas-
ing symmetric rearrangement of a function introduced by H.A. Schwarz in
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1890: Given a function h : Q@ — R, h € LY(Q), we define the decreasing
symmetric rearrangement of h, h*, as the (unique) function A* : Q* — R
such that h* is symmetric (i.e., h*(z) = h*(Z) if |z| = |Z|), h* decreases
if |x| decreases and the level sets of h and h* are equimeasurables (i.e.,
m{z € Q : h(z) > 0}) = m({z € Q" : h*(x) > 0}),V0 € R). A more
systematic definition of A* can be introduced as follows: we first define the
distribution function of h by

p:R =R, ud) :=mi{reQ:h(x)>06}.

Then we define the scalar decreasing rearrangement of h by

b (0,m(Q)] = R, h(s) :=inf{f € R: u(d) < s}

(notice that h(s) ~ p~'(s)). Finally, we define the symmetric decreasing re-
arrangement of h, by

R Q- R, h*(z) := h(wyl|z|N).

Notice that, since h* is symmetric, we can write h*(x) = H(|z|) with H : R —
R. Nevertheless H # h since H(r) = h(wnrY). Notice, also, that assumed
h > 0, by construction, we have that

h € L'(Q) implies that h* € L'(Q*) and

/ h(z)dx = / h*(z)dx (the Cavalieri Principle)
(9] *

and that

h € L*() implies that h* € L*°(Q*) and

esssup ,cq h(x) = esssup ,cq- h*(z).

The third step of the process is the symmetrization of the second order
operator. We must replace the diffusion operator div A (z,u, Vu) by another
isotropic diffusion operator, i.e., with the same behavior in any direction x;.
Several possibilities arise. Here we shall consider, merely, a special case. As-
sume that condition (4) holds and that, in addition,

A(z,u,&)-€ > [¢fF VEERY.
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Then we shall define as symmetrized operator of div A (x,u, Vu) the one given
by
Apu = div (|VulP2Vu)
(notice than if we take A*(x,u,&) = |¢[P~2 then condition (4) holds with the
equality sign instead the inequality one).
We also must introduce an isotropic absorption by assuming (besides (5))
the condition

(9)

gz, u)u > gu)u  ae z€Q,
for some continuous function ¢g:R — R.

Summarizing, we say that the symmetrized problem of (P) is the following
one:

PROBLEM. (P*): Find U : [0,00) x * — R such that

b(U) — AU +g(U) = f*(t,x), t>0, xe€QF
(P*) ¢ U=h*, t>0, ze€dN*,
b(U(0,2)) =b(uj(z)), x e 0"

Here f*(t,-) and ug(-) are the decreasing symmetric rearrangements of f(¢,-)
and wug, respectively. For the sake of simplicity in the exposition we shall
assume now that
h=h*=0. (10)
Let us make some remarks on the statement of the symmetrized mass com-
parison principle. The first one is that some pioneer authors finding different
relations between v and U where Saint-Venant (1856), Poya and Szego (1951)
and Weimberger (1962). The inequality

u (x) <U(x), x € QF, (11)

was first proved by G. Talenti, in 1976, for the case of the stationary problem
without absorption term (i.e., b = 0 and g = 0). Unfortunately, this (point-
wise) comparison fails to be true for parabolic problems (i.e., b # 0) or/and
for problems in presence of absorption terms (g # 0). In those cases we only
can compare the distribution of the mass of u and U

THEOREM 2. (Symmetrized Mass Comparison Principle (SMCP))

/ u*(t,x)dx < / U(t,z)dz,Vt > 0,¥r € [0, R],
B(O,T’) B(O,T‘)

assumed that Q* = B(0, R).
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Notice that this comparison can be, equivalently, expressed in terms of
scalar decreasing rearrangement as

/ it o)do < / U(t, o)do, ¥t > 0, ¥s € [0,m(Q)].
0 0

The SMCP has many applications (as we shall see in other sections). The main
philosophy of the applications is that function U can be easily estimated in
many cases and thus, thanks to the SMCP, properties for U can be extended in
similar properties for u. Some books dealing with the symmetrization process
are the ones by Bandle [6], Mossino [35] and Kawohl [33]. The proof we shall
present here follows the memoir Diaz [21] (see also Diaz [22]). A different (and
very original) approach is due to Abourjail and Benilan [1]. The first result
in the literature for degenerate parabolic problems was Vazquez [41].

2.2. PROOF OF THE TWO COMPARISON PRINCIPLES.

ON THE POINTWISE COMPARISON PRINCIPLE. We present here a par-
ticular version of this principle (more general results will be indicated later)
for the special case of the diffusion-convection operator arising in the study
of turbulent flow of a fluid through a porous medium. More precisely, we
consider the problem

b(u)y — div (¢(Vu + eK (b(u)))) + g(z,u) = f(z,t), t>0,2€Q,
(Pypxc) § uw=h, t>0,2 €09,
b(u(0,z)) = b(uo(x)) z €,

where ¢(&) = [£[P72¢, p>1,e € RN and K € C%(R,R). Besides the condi-

tions made explicit in Section 1 we shall made some extra assumptions:

( there exists C* >0 such that
7b AN * AN —~ o~
! g(sn) —g(n) = =C*(b(n) = b(n)), Yn>n, n,n€eR,

(notice that (H,p) trivially holds if, for instance, g(-,7) is nondecreasing in 7
or if g(-,n) :=g(-,b(n)) with g(-, s) Lipschitz continuous in s),
K (b(n)) is Holder continuous in 1 of exponent v > % ifl<p<2
(Hx)q andy > 5 (G + 5 =1)ifp>2,
[K(b(n)) — K(b(M))| < Cln—7l", vn,n€R,

(notice that condition (4) is now trivially satisfied).
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THEOREM 3. Let (f,h, uo), (f,h, o) be such that f < f,h < h and ug <
Up on their respective domains. Let u,u be two bounded weak solutions of
(Py k) associated to (f, h,uo) and (]/"\, /ﬁ, Up), respectively. Assume, in addition,
that u and u are strong solutions, i.e.,

b(u)s, b(@); € L' ((0,T) x Q), VT > 0. (12)

Then u < w on (0,T) x Q. More in general, if we replace the ordered data
assumption by the simpler condition h < h and fi1< f1 then

[1[bCult, ) = b(a(t, )]+ () < € ll[b(uo) — b(@o)]+ |10

b - 13
+/ e f2(r, ) = ol )l ydr 1)
0

for any t > 0 (C* given in (H,p)), where ¢4 = max(¢p,0).

Proof. We take as test function the following approximation of the signar (u
—u) function: we start by defining ¥s(n) := min(1, max(0, ¥)), for 6 > 0
small. Then we define v = Ws(u — u). Notice that v € LP(0,T : Wol’p Q)N
L>*((0,T) x Q),VT > 0, and that

0 otherwise.

l o~ . =
VU:{V5(u u) f0<u—u<y,

Then, since f; < fo, defining the set

As :={(t,x) € (0,T) x Q: 0 < u(t,z) —u(t,z) <}

we get,
/ / W — b(@)e) Us(u — @)dwdt + I (8) + I (5)
n / [ (96a.0) = gl ) s — D)o
TO Q R A
/0 /Q ( fo fg) Us(u — 0)dxdt,
where

1 (T
he) = 5 /0 ; {¢ (Vu+ K(b(u))e) — ¢ (Vu + K(b(u))e)} -
A{Vu+ K(b(u))e — Vu — K (b(u))e}dxdt,
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1 T
@) = 5[ [ A0(Vur Kbw)e) - o (Va+ Kb(@)e)}-

A{=K(b(u))e + K(b(u))e} ddt

(here T is arbitrary but fixed, T' > 0). Applying the Young inequality, a3 <
C(e)p~'a? + ep/ ' 37, we see that

€ T N . o
|12(0)| < 517’/0 [45 | (Vu+ K(b(u))e) — ¢ (Vu+ K(b(u))e)|” dxdt

C(e)
+ 3p

T
/ |K (b(u)) — K (b(@))P| dedt == I + 1.
0 JAs

We shall only consider the case of p € (1,2) (the case p > 2 is similar and,
even, easier). We need an algebraic inequality

LEMMA 1. (see, e.g., Diaz and de Thelin [25]) Let ¢(&) := [£|P72¢ with
p > 1. Then, there exists C' > 0 such that

/ 1_%

¢ o) - 0@ < {(6© 0@ - €~ D}* {ls@ + 6@}

witha=2ifl<p<2anda=p ifp>2.

Using Lemma 1 we obtain that
15| < eCL(9),
for some C independent of §. Moreover

Cle)

b < =
2 5]9

IN

/ (Clu — @|)Pdzdt < C(e)m(As)6%P !
As

for some C(€) > 0 independent of 6. Then
1(8) + Iy(8) > I (8) — |I(8)| > (1 — eC)I1(6) — C(e)m(As)8P~ L.

Taking € small enough (so that 1 — eC > 0) and using that I;(6) > 0 we have
that
lm(11(9) + 1>(9)) = 0

and so

u>u

|t ~b@nna+ [ (gfn) gl ) <0
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From assumption (H, ) we deduce that

u>u

/ (b = @)t < / (bw) — b(@))dadt,

so that

/0 ' /Q max{b(u) — b(@),0};dxdt < /0 ' /Q max{(b(u) — b(@)),0}dzdt,

and, finally

T
/ max{b(u(T, 2)) — b(@(T, z)), 0}dwdt < / / max{(b(w) — b(@)), 0}dadt.
Q 0 Q
Then, by Gronwall inequality
b(u) < b(u) a.e (t,z) e (0,T) x Q.

If b is strictly increasing this implies that v < & and the proof of the first
conclusion ends. In the general case (i.e., when b is merely nondecreasing) it
remains the consideration of the case in which As C {b(u) = b(u)}, for any §
small, (since otherwise the above arguments apply). In that case [2(d) =0
implies that [;(6) = 0. But from Lemma 1

T IVUs(u—10))? dadt
1,(6) > C§ — >0.
1) 2 /o /Q{]Vu—i—K(b(u))eP”—i—IVﬂ—i—K(b(a))e\p}p

So, U(u—1u) =0 a.e. on (0,7) x Q which implies that v < u on this set. The
proof of the case p > 2 and inequality (13) follows the same type of arguments.
|

Remark 1. Tt can be proved (see Diaz and de Thelin [25]) that if b is a
Lipschitz function and ug is regular enough then any bounded weak solution
is a strong solution (i.e., b(u): € LY(Qr), Qr := (0,T) x Q). The proof of the
existence of strong solutions under more general conditions on b is a delicate
task (see the recent results by Benilan and Gariepy [13]).

Remark 2. The (pointwise) comparison principle can be obtained for
weaker solutions by using more complicated arguments and other selected
notions of solutions (entropy solutions, renormalized solutions, good solu-
tions,...). See the works by Benilan and Touré, Benilan and Wittbold, Carrillo,
Otto,...
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Remark 3. The quantitative inequality (13) is a typical consequence of
the application of abstract results (the T-accretiveness of the operator). An
illustration of how this theory can be applied to the concrete case of problem
(P4 k) (when h = 0) is due to Bouhsiss [16]

ON THE SYMMETRIZED MASS COMPARISON PRINCIPLE. We recall that
this time we assume the additional conditions

A($7 u, f) ' 5 > ‘§|p’ (14)
g(x,u)u > g(u)u for some g€ C(R:R), (15)
and, for simplicity, (10). Here we also assume that
f=faeL.(0,00:LQ)).

We shall only consider (for simplicity) the case in which v and U are nonneg-
ative functions.

THEOREM 4. Assume that g is nondecreasing or locally Lipschitz and that
the function

e(n) =g~ (n))

is well defined and can be decomposed as

® =1+ P2 (16)

with ¢, convex and o concave. Then

/Sb(ﬂ(t,a))dag /Sb(ﬁ(t,a))da s € [0,m@Q) vt € 0,00).  (17)
0 0

Idea of the proof. First of all we point out that conclusion (17) is stable
by approximations of the data (f,ug,b and A) leading to the convergence of
solutions in L*(0,T : L'(£2)). Due to that, we can assume the data regular
enough (and, in particular, that u and U are strong solutions b(u); € L'(Q7),
b(U): € LN (Q%), Q% = (0,T) x Q and that b is strictly increasing.

Step 1. The radially symmetric problem. We define

K(t,s) = /0 WO (1 0))do
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where U(t,-) is the scalar decreasing rearrangement of U (t, ). First of all, let
us prove that U(t,z) decreases when |x| increases. By the symmetry of the
data (and the uniqueness of solutions, implicitly assumed) we deduce that
U(t,x) = U(t,|x|). Moreover U, := %U(t,r), r = |z| verifies that

2 W)U - & (JUP20,) + G (U)U, = F, in (0,T) x (0, R),
Up(t,0)=0, U.(t,R) <0, te(0,7),
Ur(0,7) = Up(r) r € (0,R),

where Q* = B(0, R), Up(r) = tg(wnr™) and F(t,7) = f(t,wnrN). Then by
the maximum principle (here is possible to apply classical results since U, can
be assumed to be smooth), as Fy.(¢,-) < 0 and Up,(-) < 0, we deduce that
U.(t,-) <0, ie., U(t,r) decreases when r increases. In consequence, U(t,-) =
U*(t,-) (the function coincides with its decreasing symmetric rearrangement),
and so B
Ult,z) =U(t,wyr™), 7=z
Making
s = wnr’ (s € (0,m(2)))

we get that

0K ~ oU 1 N1 90U
Z2(t,s) = b(U(t L = Nwls~ —,
s ( ,S) b(U( as))a or Wy S N o

We deduce that K satisfies the parabolic (fully non-linear) problem

OK 9, P2y 0K
T a(s) 83 ( ) ab (EH'
s 0K _ s € (0,m())
(FN7) /og(l’l(a (49) )d" /f” te(0.7),
K(t,0)=0, K(t,m(Q))=0 te(0,7),
K(0,s) = ; b(up(o))do s € (0,m(9)),

where »
a(s) := [Nw]lv/Ns(”_l)/”}

Step 2. Study of the rearrangement of u. Given u(t, -) (the scalar decreasing
rearrangement of the solution u of (P)), we define

k(t, s) /b (t,0))
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The main goal of this second step is to prove that k(t,s) is a subsolution of
(FN*) in the sense that it verifies all the conditions but replacing the fully
nonlinear equation by the inequality

gbfl % p72gb*1 %
0s 0s Js 0s

+/Osg(b_1 (g’:(t,a)» do < /0 f(t,0)do,

s € (0,m(Q)),t € (0,T). The proof of this inequality is quite long and tech-
nical. This process can be also divided in several steps:
(i) Define the function 75 : RT — R* given by

Ok
ot a(s)

(18)

Top(s)=0  if0<s<t,
Trp(s)=s—t ift<s<t+h,
Trn(s)=nh if s >t+ h.

We take v = T j(u), as test function. Passing to the limit, as h | 0, we deduce
that

n() 1(9)
_8/ |VulPdx S/ f(t,s)ds —/ g(u(t,s))ds —/ ab(u)da:
a0 u>6 0 0 u>0 ot

where we used the assumptions (14) and (9) and where p(6) denotes the
distribution function of wu(t, ).
(ii) We have that

, 1/p
NNV O < (o) (~ 5 [ wuas)
u>0

(this is a classical result in the rearrangement theory: the proof uses the, so
called, Fleming-Rishel formula, the isoperimetric inequality and the notion of
perimeter in the Giorgi sense).

(iii) the following identity holds

bu) ("D ob(u(t,o)) Ok
/M o ¢ /0 o 0T L)

(although a first proof of this formula already appears in the book by Bandle
[6] a more general, and rigorous, proof is due to Mossino and Rakotoson [36]).
An easy manipulation of (i), (ii), (iii) leads to the wanted inequality for k.
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Step 3. Comparison using the fully nonlinear equation. First of all, notice
that the comparison

k(t,s) < K(t,s) vVt €[0,T], Vse (0,m()),

coincides with the conclusion of the theorem. The main difficulty now is not
associated to the very complicated diffusion operator but with the nonlocal
nature of the zero order perturbation term. The key idea to obtain the result
is that, by assumption (16),

p(r) — () < (P1(r) + 5(F) (r—r)  Vr7eR

(use for instance, Taylor formula, the convexity of ¢ and the concavity of
©2). Then

| [a@t.0) a0 i < [ [ae@0) + o]

: [b(ﬁ(t, o)) + b(a(t, a))} do
C1 |k(t, s) — K(t, )|

+Cy max |k(T,0) — K(7,0)],
T7€[0,T],0€[0,s]

IN

for some positive constants C; and Cs. The comparison is now a consequence of
the classical pointwise comparison principle also related to the T-accretiveness
of the complicated operator, but this time in the space CY(€2), (details can be
found in Diaz [21]: see also other references indicated at the Introduction of
this section).

Remark 4. Thanks to a result due to Hardy, Littlewood and Polya in 1929
(see, e.g., [6]), the comparison

/sb(ﬂ(t,a))da < / b(U(t,0))do Vs € [0,m(Q)],Vt € [0, 00),
0 0

implies that

/ ® ((u(t,o)))do < / (®(b(U(t,0)))do Vs € [0,m(Q)],Vt € [0,00)
0 0
for any convex nondecreasing function ®. In particular, if

b is a concave function
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we get
/ (t, 0)do < / Ult,0)ds Vs € [0,m(Q)], ¥t € [0, 00),
0 0

which is the conclusion presented at the Introduction of this section. Notice
that a different application of the above result by Hardy, Littlewood and Polya
is that

[b(u(t, Dlla@) < [BUE, ) La@r)
for any ¢ € [1,00). Indeed, it suffices to use ®(r) = |r|? and that

" Udo = * Uy = u(t, z))|%dx
| o = [ o eopirae = [ )

3. THE FINITE EXTINCTION TIME PROPERTY

3.1. INTRODUCTION. One of the most natural questions concerning prob-
lem (P) is the stabilization of solutions: Assumed that

F(t,) — foo(-) and A(t,) — hoo(?) as t — +oo

in suitable functional spaces then u(t, ) — uxo(+) as ¢ — +oo (in some suit-
able sense) with us () solution of the associated stationary problem

() —divA(z,u, Vi) + 9(2,us) = foo(x), x€Q,
> Uso = Moo, on 0f).

A general result, stated in terms of the omega limit set

w(u) := {teo € WHP(Q): 3 t,, — oo such that

U(ty, ) — Us in LP(Q), as n — oo}

jointly with stronger convergence results (but for different particular cases)
can be found in Diaz and de Thelin [25]. For stronger convergence results
for one-dimensional particular equations see Feireisel and Simondon [28] and
their references.

Very often fo, =0, hoo = 0 and A and g are such that u., = 0 is the unique
solution to problem (Ps,). In several applications (case of models in plasma
physics and also in some chemical reactions) it is observed that there is a very
strong stabilization in the following sense: there exists a finite time Ty > 0
such that u(t,z) = 0,V t > Ty and a.e. = € . This property is called as
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the finite extinction time property and has been considered by many authors
in the literature. The main goal of this section is to illustrate the application
of the above two comparison principles to the study of this property. A third
method (using energy arguments and so applicable to higher order parabolic
problems and systems) will be also presented.

3.2. THE FINITE EXTINCTION TIME VIA THE POINTWISE COMPARISON
PRINCIPLE. A first result proving the occurrence of this property for some
special formulation of problem (P) is the following

THEOREM 5. Let u satisfying

(|u]a_1 u)t —ANpu=0, te(0,00),z€Q,

(Pap) § w=0, t € (0,00),z € 09,
u(0,z) = ug (z) x €1,
with
ug € Cc(Q), ie., with suppug a compact subset of . (19)

Assume that
(p—1) <o (20)

Then the finite extinction time property holds.

Proof. We assume u in the class of solutions in which the pointwise com-
parison principle holds (due to the special formulation of (P, ,) it can be
shown (Benilan [11]) that this is our case for any o > 0 and p > 1). Then if
u (resp. u) is a supersolution of problem (P, ) (resp. subsolution) then

u<u<u. (21)

So, if we are able to construct w (resp. w) vanishing after a finite time this
property also holds for u. Inspired in a pioneering paper (Sabinina [39]) we
shall construct @ as a separable supersolution, i.e., @ (t,x) = ®(t)w(z). Since
we want to have ® > 0 and w > 0, we define

Nw = (\m“—lﬂ) — AT = (DY), w® — B A .
t
We take ® such that

{ (@), = —A@P~L t € (0,00), (22)

®(0) = M,
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with A > 0 and M > 0 to be determined. Due to the crucial assumption (20)
the solution of (22) vanishes after a finite Tg > 0 (notice that ¥ := & verifies
an ODE with a term which is not Lipschitz ¥; + AT =0 ). Notice also
that (22) is integrable since it is a first order ordinary equation of separable

variables. Then
Na = P~V (—aw® — Ajw).

In consequence we choose, as w, the solution of the first eigenvalue problem
for the A, operator, i.e., A = A1 > 0 and

_ — p—1
{ Aw = \w on f, (23)

w=20 on 0f),

(the existence of a unique function w satisfying that w > 0 on Q and
|[w||gee(@) = 1 was due to Anane [3] and Barles [8]). Then

Na = &1 (=huw® + Auwp?)
= NP lwPL (1 —wem@=D) > 0

since 0 <w < 1and a> (p—1).
The boundary condition holds

ﬂ(t,ﬂj)‘ @(t)w’ag = 0.

(0,00)x0Q
The comparison between the initial data
uo(z) < Mw(z), x€Q

trivially holds by taking M big enough (recall the assumption (19) on wyg).
The construction of u < 0 is similar. 1

Remark 5. The above statement can be improved in many different di-
rections (but with longer proofs). For instance, in the case of p = 2 the
homogeneity assumed on b is not needed. More precisely, in G. Diaz and J.I.
Diaz [18], the finite extinction time property was established for the problem

b(u)y — Au = f(z,t), =€ Q,t>0,
u =0, x € 08t >0, (24)
u(0,x) = up(z), x € (),

by assuming

ds
/0+ 7[)_1(8) < 400 (25)
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and the existence of Tt such that f(¢,z) =0, for ¢ > Ty and 2 € 2. Notice
that now p = 2 and that if b(s) = |s|*'s then (25) if and only if o > 1,
i.e., the same condition than (20). In fact, in this paper it is also shown that
condition (25) is also necessary for the existence of a finite extinction time.

Remark 6. Notice that the finite extinction time can not be satisfied (in
case of the general formulation of (P)) each time that the strong maximum
principle holds (see, e.g., Nirenberg [37]) or the unique continuation property
is verified (see, e.g., Ghidaglia [29] and its references).

When condition (20) holds, it is said that we have a fast diffusion (in
fact, this term is more appropriate when talking on the balance between the
accumulation and the diffusion terms). It is very easy to see that if we assume
(20) then the conclusion of the above theorem remains true under the presence
of a nondecreasing absorption term as, for instance,

<|u|0‘_1 u)t — ANpuA |ulTtu=0

for any ¢ > 0. The finite extinction time property also occurs due to suitable
balance between the accumulation and absorption terms. It is the so called
strong absorption case.

THEOREM 6. Let u satisfying

(lul* ), = Bput ™ u =0, te (0,00, e,

(Paypag) § u=0, te (0,00), z € 09,
u(O,x) = UO(x)7 T E Q:
with
ug € L (Q). (26)
Assume
>0 and 0<q<a withp>1 arbitrary. (27)

Then the finite extinction time property holds.

Proof. Tt is easy to see that the function w(x,t) = ®(¢), with ® the
(unique) solution of the ODE

{ (), + u®4 =0, te (0,00),

B (0) = M, (28)

(compare it with (22)) is a supersolution once that M > [lugl|fe(q)- The
assumption (27) implies that ® vanishes after some finite time Tg. 1
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Remark 7. A general survey containing many references on this property
is due to Kalashnikov [32].

3.3. THE FINITE EXTINCTION TIME VIA THE MASS SYMMETRIZED COM-
PARISON PRINCIPLE. Thanks to the mass symmetrized comparison principle
it is possible to extend the last two theorems to more general equations for
which the construction of super and subsolutions can be very difficult (spe-
cially in the case of the first of the theorems).

THEOREM 7. Let u be the solution of (P) with f =0,h = 0,ug € C.(Q),
up > 0 and assume b(u) = |u|* ' u, (14) and (9). We also suppose that one
of the two following conditions holds:

(p—1) < a and

~ 1 9
e(n) :=9g(nl=""n) =1 (n) +v2(n),n R (29)
with ¢ (resp. p2) nondecreasing and convex
(resp. nondecreasing and concave),

or
G(n) = p|n|tn with p >0 and
q<ca. (30)

Then the finite extinction time property is verified. More precisely, if we define
as Ty, the first extinction time (in which [lu (To, )| ;1 gy = 0) then
Too < To0-,

where Tp o+ is the first extinction time for the symmetrized problem (P*).

Proof. By the mass symmetrized comparison principle and the result by
Hardy, Littlewood and Polya mentioned in the above Section we have that

16 Cu (8 D 1) < 10U (& Dl
for any t > 0. Assumption (29) (resp (30)) allows to apply Theorem 5 (resp
Theorem 8) which proves the result. i

Remark 8. Notice that the general structure of A (x,u, &) may be the origin
of very complicated behaviors of the solution of the associated eigenvalue
problem

w=20 on Of).

So that the arguments of the proof of Theorem 5 do not apply directly to
problem (P).

{—divA(:p,w,Vw)—)\wpl in  Q,
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3.4. THE FINITE EXTINCTION TIME VIA AN ENERGY METHOD. A method
which do not use any comparison principle can be applied to the study of this
property. The following is merely a special version of the method:

THEOREM 8. Let u be the solution of (P) with h = 0,

f e L>((0,00) x ) such that 3Ty > 0 with (31)
f(t,x) =0 a.e. t > Ty and a.e. x € (Q,
uy € L®(Q), b(u) = [u|* 'u, a > 0, A satisfying (14) and
g(z,m) =0 VneR. (32)

Assume that (20) holds (i.e., p — 1 < «). Then the finite extinction property
holds.

Proof. We take as test function v = |u|*"'u (which we shall write, for
simplicity, as v = uk) with £ > 0 to be determined later. We also write u®
instead of |u|*~!u by simplicity in the notation (nevertheless, it is not required
that v > 0). Integrating on the open (bounded) set 2 in each term of the
equation we get :

ou®

ek _ (a—1)+k
uwdr = /au urdx
o Ot Q !

- b ()

(the justification of the final formula for u weak solution of (P), i.e., without
the condition (u®); € L(12), is due to Alt and Luckhaus [2]),

—/divA(x,u,Vu)ukdx = k:/A(:U,u, V) - VuuFdz
Q Q

\Y]

k/ |VulPuf~Lde.
Q

So, using (31) and (32) we get that, if ¢ > T, then

« d

a+k k—1
—— t)d k p dx <0.
(a+k)dt/gu (x,t)dx + /Q|Vu\u x <

We need the following interpolation result
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LEMMA 2. Let p > 1 and k > 1. There exists a constant C = C(m(2),p,
N, k) such that if w € WOLI(Q) and [, |[Vw|P|w|*~'dz < +o0o we have that

([

pt+k—1

SCkp/ VP w|*~da
Q

with
1<s < MEEED e p < N,
<s< o0 if p=N,
5§ =00 if p> N.

ptk—1

Idea of the proof of the Lemma. Define z(x) = |w(z)| 7  sign(w(x)).

Then Y
/ \Vz|Pda = (p—|——> / IVw|P|w|*da
Q p Q

and the conclusion follows from the application of the Poincaré-Sobolev and
Hoélder inequalities. |

Continuation of the proof of Theorem 8. By the above lemma we have

p+k—1

Mi </Qua+k(t,x)dx> e </Qus(t,x)dac> T <o

for ¢ > Ty. Applying Holder inequality we get

</Q uo‘+k(t,x)dx)aik < C(n()) (/Q uS(t,g;)cz;c)i

(take k =1if p> N and k > (e — (p—1)) —a if p < N). Then if we define

Y(t) ::/Qua+k(t7$)dx

we have that

Y/(t) + CY (1)’ <0 on (Ty,00), 7=t e (0,1),
Y (Ty) = Y; > 0.

So, again, 3Ty > T such that Y (t) = 0 if ¢ > Ty and the conclusion holds. 1

Remark 9. Some similar energy method can be applied to the case of
strong absorption (see, e.g., Tsutsumi [40]).
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Remark 10. Under some extra decay assumptions on f(t,-), near T, it
is possible to show something unexpected: Tp = T (see Antontsev and Diaz

[4])-

Remark 11. Similar energy methods applied to higher order quasilinear
parabolic equations can be found in Bernis [14], [15].

Remark 12. One of pioneering applications of this type of energy methods
was concerning the case p = 2 and Q = R™. In that case the condition for
the existence of a finite extinction time is

- N
> —
N -2’
stronger than a > 1 correspondent to bounded domains (see Benilan and
Crandall [12]).

As a final and global remark we point out that the three methods used
in this section can be also applied to the study of other different qualitative
properties, as for instance, the existence of a finite blow-up time Ty, (such
that |[b(u(t,))|[zr@) — +00 as t — +oo, for some r € [1,+0oc]). Obviously,
this property requires completely different assumptions on A,b and g. The
connection between the finite extinction time and the finite blow-up time
properties for a couple of different nonlinear equations has been considered in
Kawohl and Peletier [34].

4. THE FINITE SPEED OF PROPAGATION PROPERTY

4.1. INTRODUCTION. The formulation of problem (P) is very general. It
includes not only the linear heat equation

up—Au=0 (33)

but many other cases in which the behavior of the correspondent solutions is
very different to the one of the solution of the linear heat equation (remember
the remarks concerning the finite extinction time property as peculiar of fast
diffusion or strong absorption and opposite to properties as the strong maxi-
mum principle or the unique continuation property which holds for the linear
equation).

Another qualitative property typical of some suitable nonlinear models
concerns the finite speed of propagation of disturbances: if the initial datum
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uo vanishes on a positively measured set of Q (i.e., supp(ug) C Q) then
suppu(t,-) C Q, for any ¢ € (0,t*), for some t* > 0.

This behavior (typical of the linear wave equation) fails for the linear heat
equation (this can be illustrated in many ways: the strong maximum principle,
the explicit representation formula for Q = RY etc). It is said that the linear
heat equation has an infinite speed of propagation.

When the finite speed of propagation holds then

supp (u(t,-)) :={x € Q& wu(t,z) #0} C Q
(at least for some small times ¢) and so some hypersurfaces (0, 00) x RY)

F = Uf(t), F(t) = O(suppu(t,-)) — 0N

t>0

are formed. Those hypersurfaces are called as free boundaries (since they are
not a priori determined) and play a very important role in the study of the
model (usually is in those free boundaries where are located the singularities
of the gradient and/or the second derivatives of the solutions).

The main goal of this section is to illustrate how the two comparison
principles can be applied to the study of the occurrence of this property. As
in the previous section, a third method (involving different energy arguments)
will be also presented.

4.2. THE FINITE SPEED OF PROPAGATION VIA THE POINTWISE COMPAR-
ISON PRINCIPLE. As in the Subsection 3.2, the main idea will be to construct
suitable super and subsolutions (now vanishing locally in some subdomains).
In fact, those functions use to be constructed by modifying special solutions
of the equation (so this task is closer to an quantitative study of pde’s than
the usual approach to pde’s by methods of functional analysis).

To start with, let us consider the nonlinear equation

<\u|a_1u)t —Au=0, a>0, p>1. (34)

Although we remain interested in the Cauchy-Dirichlet problem (P, ), it is
useful to start by considering the pure Cauchy problem (i.e., Q@ = RV). A
very important family of exact solutions is the one given by

1

Z]‘\i1 |xi’p,
5 C — pea=1rml

UM(t,x) = ey

(p—1)/(p—1-a)
] (35)

+
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which arises when

p—1) >« (36)
(notice that the fast diffusion was (p — 1) < «), where
p= Lt = =
p—1 (@+1)(p—-N)+ (N -1)p’

A= 0 and = g0l
«Q p

(C > 0 arbitrary). Such solutions were obtained, by first time, by G. L
Barenblatt in 1952 for the case p = 2 (also in the case, they were refound by
R. E. Pattle in 1959). The case p # 2 was found by A. Bamberger in 1975.
We point out that when p # 2 the solution Uy is not radially symmetric with
respect to the usual Euclidean norm of RV . Nevertheless, it is possible to find
other exact solutions with free boundaries and symmetry (although they are
not so explicit as Ups). Many references on this topic can be found in the
surveys by Kalashnikov [32] and [42]. We also point out that:

/ Un(t,z)dx = M, M = M(C,a,p,N),
RN
Ul(t,) — Mdy(x),

and that the free boundary generated by Uy, is explicitly given by the equation

N

/ C /
S falP =
=1 k

A simple result is the following.

THEOREM 9. Let u satisfying

(Jul* T u)y — Ayu =10, te(0,00),z €,

u =0, t € (0,00),x € 09,
u(0,x) = up(x), x €,
with
ug € Ce(Q) such that (37)
supp ug C B(zo, Rp) C Q.
Assume that
(p—1) > a. (38)

Then the finite speed of propagation holds.
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Proof. As in Theorem 5, we can apply the pointwise comparison principle
thanks to the result by Benilan [11]. By choosing M big enough and thanks
to the assumption (37) we have that

UO(x) < UM(T,ZL' - §0) Vz € Q7

for some 7 > 0. Since the function u(t,x) := Up(t + 7,2 — Zp) satisfies that

(m\a—la)t —AT=0, te(0,00),z €D,

w >0, t € (0,00),x € 0%,
u(0,z) > up(x) x € (),

we conclude that
u(t,z) <u(t,x) t>0,z €.

By taking (if needed) different values of M and 7 we get, similarly that
—Up(t+ 7,0 — 7o) <u(t,z) ze€Q,t>0.
Thus, at least for t € [0,¢*) with ¢* small enough, we conclude that
u(t,x) =0 a.e. x € Q— B(Zy, R(t))
for some function R(t) and the result follows. |

Remark 13. Again, the above statement can be improved in many different
directions. For instance, in the case p = 2 we can replace b(u) = |u|*'u by a
general nondecreasing function satisfying that

ds
— < 39
Ja <+ 39
and the finite speed of propagation holds (see Diaz [19]). Notice that if p = 2
and b(u) = |u|* 'u then (39) holds if and only if a < 1, i.e., same condition
than (38). If N = 1 (and p = 2) it was proved by A.S. Kalashnikov (and
independently by L. A. Peletier) in 1974, that condition (39) is also necessary.

Remark 14. Once that the free boundary exists it becomes interesting
to study its dynamics: how fast it starts near ¢ = 0 (in some cases there
is a waiting time), how it behaves for ¢ — +00), the regularity of the free

boundary,etc.). Many of those questions remain still open (see the survey
Kalashnikov [32]).
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When assumption (38) holds it is said that we have a slow diffusion. It
is easy to see that if (38) holds then the finite speed of propagation remains
true under the presence of nondecreasing absorption term as, for instance,

(ul® " w) — Apu+ plu|T e =0, p>0,

for any ¢ > 0. The finite speed of propagation also occurs when the balance
between the diffusion and absorption is suitable (called again as the strong ab-
sorption case). We can consider, even, the case of nonhomogeneous boundary
conditions.

THEOREM 10. Let u satisfying

([ul*~ u)e = Apu+ plulT™ =0, t € (0,00),2 €,
(Pap,q) § u=h, t e (0,00),x € 99,
u(0,x) = up(x) x € ),

with

h e L= ((0,00) x Q) N LV

loc

(0,00 : Wl’p(Q)) , h>0on(0,00) x 00, (40)
ug € L*(2), wup >0 on Q. (41)

Assume
w>0 and 0<g<p-—1. (42)

Then the finite speed of propagation holds. More precisely: a) There exists a
positive constant L > 0 such that the null set of u(t,-) is not empty assumed
that the set

@~ (supp (w0) | (Urso supp (A (7, )
is big enough, i.e.,
N (u(t, ) ={x e Q:u(t,z) =0} D
{2 € 9 d(a, supp (w) | (Urosupp (h(r.))) > L}
for any t > 0. b) If we assume, in addition, that
g<a<l (43)
then there exists tg > 0 such that for every t > tg

N (u(t,”) > {x € Q:d(z, Upsosupp (h(r, ")) > E}

for some L > 0.
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Proof. We recall a result of Diaz [20] proving that the function

1
wx(z) = Cxle — wo|r=1-1,

Alp—1—4g)” v

CcY =
AP D (pg+ N(p—1—q))

satisfies that
—1ﬁpzuA-+»ALuu|q4lzuA =0,
assumed that (42) holds, i.e., A > 0 and ¢ < p—1. Let us prove a). Let zy € Q—

(supp ug |JUrsosupp h(7,)), and let R = d(x, (supp up |JUr>o supp h(r,-))).
Consider Q(zg) := B(xo, R) N Q. Then u(t,z) := W, (x) is a local supersolu-
tion, i.e., a supersolution on Q(z) since

([a* @) — Aja+ plalt'a=0 on (0,00) x Q(x),

u(0,z) > 0 = ug(x), on Q(xzg)

u(t,z) > 0= h(t,x) on (0,00) x Q(zp) N O,
and the condition

u(t,x) > u(t,z) on (0,00) x 0Q(zg) — 092,
is satisfied if, for instance,
p
C,LLRP_I_Q 2 Hu”LOO((O,OO)XQ) (Z U(t,l‘) a.e.(t,:n)) )

ie., if
p—1l—g
HUHLOO((o,oo)xQ)] v

Cu

e |

(notice that [[u[|fe((0,00)x0) < 00 thanks to the assumptions on h and uo, as
we can prove in many ways: for instance by using a suitable global super-
solution). Then by the pointwise comparison principle on (0, 00) x Q(zg) we
obtain that

0 <u(t,r) < Chlr — xo\ﬁ

and so u(t,z9) = 0 (even if u is not necessarily continuous).
To prove part b) we take as local supersolution the function

U(t, ) == wyo + V(1)
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with V(t) satisfying

i a—1 q— 1
{ 4 (vl v) + B vty =o, )
V(0) = [luol|ze (0 )
i.e.,
1
Vi) = |lluolld g, — L= 9| (45)
- 0 Loo(Q) 20 . .
Then J
—ja—1 — a—1 a
(" @ = a (wupl@) + V)TV = 2 (VIV)
Apﬂ:ApU)M/Q,
M’ﬂ‘qilﬂ > g|wu/2’q71wu/2 + %‘V‘qilv s
and so
(|H\aflﬂ)t A+ pla” @ > 0.
Moreover

(0,) = w5+ V(0) > [luol[32g, > uo(a).

Finally, taking
2ce

p(e = q)
we get that V(t) =0 Vt >ty and the conclusion follows as in part a). |

to = [uoll (e

Remark 15. The above result is taken from Diaz and Herndndez [23] where
other, and more general, results can be found.

Remark 16. In the model of chemical reactions, the null set N(u(t,-)) is
called as dead core. In that model usually h(t,z) =1 and so N(u(t,-)) only
occurs at the interior of €.

Remark 17. Notice that if h = 0 part b) shows the extinction in finite
time. Notice also that assumptions (42) (in addition to (43)) implies the
formation of dead core for t large even for h = 1 and ug > 0. This property
has a similar nature to the so called instantaneous shrinking of the support
established by Brezis and Friedman in 1976, or by Evans and Knerr in 1979,
both for the case of Q = RY and ug > 0 such that lim,| o uo(z) = 0 (see
references in the survey Kalashnikov [32]).
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4.3. THE FINITE SPEED OF PROPAGATION VIA THE MASS SYMMETRIZED
COMPARISON PRINCIPLE. The above method requires the construction of
sophisticated supersolutions. This is possible only for simple nonlinear oper-
ators. The application of the mass symmetrized comparison principle show
us how important is to have symmetry conditions on the partial differential
equation in order to have solutions with small support.

THEOREM 11. Let u be the solution of (P) with f =0, h =0, ug € C.(9),
up > 0 and assume b(u) = |u|* tu, (14) and (9). We also suppose the following
conditions

(p—1)>a,

(1
o(n) =3 (Inl="1n) = 1(m) + p2(n), nER
with ¢ (resp. ¢2) nondecreasing convex
(resp. nondecreasing concave),

and

/b(u(t,x))da?—/ b(U(t,x))dx, Vt>0, (46)
Q *

where U denotes the solution of the symmetrized problem. Then the support
of u(t,-) satisfy
m (suppu(t,-)) = m (supp U(t,-)) (47)

for any t > 0.

Proof. By using the mass symmetrized comparison principle, (46) and that

m(2) _
/Q b(ult, )dz = /0 b(ii(t, o))do

we have

m(Q) m(Q) s
/ bt o)) do = /0 b(ii(t, o))do — /O b(i(t, 0))do

[V
c\
2
=
=
DN
=
2
=
q
|
ﬁ
=
d
=
Q
=
q

Let
support of u = [0, R, (¢

support of U = [0, Ry (

S~ ~—
Pt
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(recall that @ and U are nondecreasing functions). Then, necessarily R, (t) >
Ry (t) since otherwise we would deduce that

m(Q) Ry(t)
/ b(ii(t, o))do > / BT (¢, 0))do > 0
Ry (t) R, (t)

which is a contradiction. Finally, it suffices to remark that

a(u ) = [Oa m( Suppu(tv ))]
(analogously for U) and the conclusion holds. |

Remark 18. Notice that by (47) if supp U(t*,-) = €, for some t* > 0, then
supp u(t*,-) = Q.

Remark 19. Assumption (46) is satisfied, for instance, when the conserva-
tion of the mass holds, i.e.,

/Q bu(t, 2))dz = /Q buo(z))dz, V> 0.

In that case [, b(uo(z))dx = [o. b(Uo(z))dx = [o. b(U(t,z))dx and (46) is
verified. The conservation of the mass is typical of pure diffusion processes
(i.e., when g = g). It can be shown (see Diaz [21]) that assumption (46) is
also verified when, besides the Dirichlet condition u(t,x) =0, t > 0, x € 99,
we have the additional information that

ou

g (t2) =0 for te(0,7), ze€0Q,

for some T > 0 (in that case the conclusion (47) holds at least for ¢ € [0,7)).
In the case of strong absorption we can allow a nonzero Dirichlet condition
THEOREM 12. Let u be the solution of (P) with f =0 and

h(t,x) = h, a positive constant. (48)

Let ug € L>*(§2) with

0 <wup(z)<h a.e. x € €. (49)
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Assume b(u) = |u|*"tu, (14), (9) and
g(n) = pn|” ' with p> 0 and g < (p — 1).
Then the supports of u(t,-) and U(t,-) satisfy that
m (suppu(t,-)) > m(suppU(t,-)) for t>0. (50)

Idea of the proof. By introducing the change of variables v(t,z) = h —
u(t,xz) and V(t,x) = h — U(t,z) we can apply the mass symmetrized com-
parison principle to v and V. Finally, it suffices to apply the result by Hardy,
Littlewood and Polya for an appropriate choice of convex function ® (see Diaz

21]). W

Remark 20. Estimates (47) and (50) allows to compare the waiting times
(when arising) for u and U.

Remark 21. Estimate (50) shows that the dead core has a bigger measure
under radially symmetric conditions. That was first observed in Bandle and
Stakgold [7].

4.4. THE FINITE SPEED OF PROPAGATION VIA AN ENERGY METHOD.
The study of the finite speed of propagation (and other qualitative properties)
can be carried out by using some energy arguments which, in contrast with
the ones of Section 3, now have a local character.

THEOREM 13. Let A satisfying (4) and
Az, u, 6| < CleP.

Let g(x,u) such that
glz,mn =0  VneR.

Assume
a<(p—1)

and let u be a local solution of the equation

(\u\o‘_lu)t —divA(z,u,Vu) + g(z,u) =0 on (0,00) x B(xg, R)
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(for some xg € RN, R > 0) such that
u(0,2) =0 a.e. =€ B(xo,po), po < R.
Then there exists t* > 0 and p : [0,t*] — [0, po] nondecreasing such that
u(t,z) =0 ae. x € B(xg,p(t)).

Idea of the proof. By multiplying by u and integrating by parts we get

a / lu(t, x CYHal:m—/ A(z,u,Vu) - Vudzrds
B,

a+1
/ / (z,u, Vu) - ndl'ds
0B,

(this can be rigorously justified from the notion of bounded weak local solu-
tion). Here B, = B(xg, p). We introduce the local energies

t
E(t,p) ::/ : A(z,u,Vu) - Vudzds
P

and

a
b(t, p) = esssup ¢4 (/B ]u(s,x)‘a—i-ldx) :
P

a+1

Using Holder inequality we get that

b+E<— (/ /B \u|pdxds> <8E)

where we used that

E t
a—(t,,o) = / A(z,u,Vu) - Vudl'ds.
dp 0B,
We need the following

LEMMA 3. (Interpolation-trace inequality) For any o € [0,p — 1] there
exist C' > 0 and 0 € [0,1] such that for any w € W?(G), G open bounded
set of RN, we have

0 1-6
[wllzr@0) < C ([IVwll ey + [wlLovi@)” (lwllpe+i@e) -



338 J.I. DiAZ

Applying the Lemma and Young inequality we obtain that

B < opt (9
< 5

for some exponent v € (0,1). This implies the result. I

Remark 22. Notice that the result holds without making explicit the boun-
dary conditions. It has a local nature.

Remark 23. The first local energy method was due to S.N. Antontsev,
in 1981. A rigorous justification of his arguments, containing also several
improvements, was made in Diaz and Veron [27].

Remark 24. Other qualitative properties (as the formation of dead cores,
the instantaneous shrinking of the support, etc) can be proved by this type of
local energy arguments. See, e.g., Antontsev, Diaz and Shmarev [5]. Those
authors are preparing a book containing many other applications.

Remark 25. For the application of this type of arguments to higher order
equations see Bernis [14], [15] and their references.

As a global, and final, remark we mention that the finite speed of prop-
agation, the finite extinction time and other qualitative properties can be
analyzed for hyperbolic first order equations of the type

ou ol 0
=+ ; g, 2i(w) +9(@,u) = f(¢,2)

see Diaz and Veron [26] and Diaz and Kruhzkov [24].
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