Sequentially m-Barrelled Algebras

SIHAM JALAL AL-SAYYAD

Dept. of Mathematics, Fac. of Science, Girls Section, King Abdulaziz University
P.O. Box 30305, Jeddah-21477, Saudi Arabia

(Research paper presented by S. Dierolf)

AMS Subject Class. (2000): 46–XX

Received February 22, 2000

1. Introduction

The concept of m-barrelled algebra was introduced in [5]. Using sequential convergence, we introduce, in this paper, sequentially m-barrelled algebras in the same fashion as s-barrelled spaces were introduced in [8].

An analogue of the Banach-Steinhaus theorem is proved. As an application, we obtain an interesting result in orthogonal bases, which is the analogue of the isomorphism theorem.

An algebra which is also a locally convex space is called a locally convex algebra if the multiplication in it is jointly continuous. A subset S of an algebra is called m-convex if it is convex and idempotent (i.e. $SS \subseteq S$).

A locally convex algebra E is called a locally m-convex algebra if it has a neighbourhood basis of 0 consisting of closed, circled and m-convex sets [7]. A locally convex algebra E is called an m-barrelled algebra if every m-barrel (closed, circled, m-convex and absorbing set) is a neighbourhood of 0 in E [5].

A locally convex space is called a barrelled space (sequentially barrelled space) if every barrel, i.e. closed, circled, convex, absorbing set, is a neighbourhood of 0 (an S-barrel, i.e. sequentially closed, circled, convex, absorbing set, is a sequential neighbourhood of 0 [8]). A mapping $T : E \to F$ (E and F are algebras) is called multiplicative if $T(xy) = T(x)T(y)$. A set V in a topological vector space X is called a sequential neighbourhood of 0 if every sequence in X converging to 0 belongs to V eventually.

A sequence $\{x_i\}$ in a locally convex space E is called a topological basis (or, basis) for E if for each x in E, there is a unique sequence $\{\alpha_i\}$ in K such
that

\[x = \lim_{n} \sum_{i=1}^{n} \alpha_{i} x_{i} \]

in the topology of \(E \) [6]. Each \(\alpha_{i} \), called expansion coefficient, defined by \(\lambda_{i}(x) = \alpha_{i} \), defines a linear functional \(\lambda_{i} \) on \(E \). If each \(\lambda_{i} \) is continuous (sequentially continuous) then \(\{x_{i}\} \) is called a Schauder basis (S-Schauder basis [4]).

Let \(E \) and \(F \) be locally convex spaces. A sequence \(\{x_{i}\} \) in \(E \) is similar to a sequence \(\{y_{i}\} \) in \(F \) if for all sequences \(\{a_{i}\} \subset \mathbb{K} \), \(\sum_{i=1}^{\infty} a_{i} x_{i} \) converges (in \(E \)) iff \(\sum_{i=1}^{\infty} a_{i} y_{i} \) converges (in \(F \)) [2].

A mapping \(T : E \to F \) is called sequential topological isomorphism if it is linear, one-one, onto, sequentially continuous and \(T^{-1} \) is sequentially continuous.

A basis \(\{x_{i}\} \) in a locally convex algebra \(E \) is called orthogonal if \(x_{i} x_{j} = 0 \) for \(i \neq j \) and \(x_{i}^{2} = x_{i} [1] \). In a Hausdorff locally convex algebra (or even in Hausdorff Topological algebra) an orthogonal basis is a Schauder basis [1]. We always consider vector spaces over the field of complex numbers.

2. Sequentially m-barrelled algebras

In this section we introduce the concept of sequentially m-barrelled algebra with two examples and obtain some results.

Definitions 2.1. (a) Let \(E \) be a locally convex algebra. If a subset \(A \) is an S-barrel and idempotent, then it is called a sequentially m-barrel.

(b) If every sequentially m-barrel in \(E \) is a sequential neighbourhood of 0, then \(E \) is called a sequentially m-barrelled algebra.

Remarks 2.2. (a) Every m-barrel is a sequentially m-barrel.

(b) In a metrizable locally convex algebra, the concepts of m-barrelled algebra and sequentially m-barrelled algebra coincide.

Example 2.3. Let \(C(I) \) be the Banach algebra of all continuous functions on \(I = [0, 1] \) with the norm

\[\|f\| = \sup_{t \in I} \{|f(t)|\} , \quad f \in C(I) \]
Let E be the vector subspace of $C(I)$, consisting of all elements $f \in C(I)$ which vanish in a neighbourhood (depending on f) of $t = 0$. Let

$$B = \{ f \in E : |f(1/n)| \leq 1/n \text{ for all } n \in \mathbb{N} \}.$$

Then B is a sequentially m-barrel in E. But B is not a sequential neighbourhood of 0 in E [3]. Hence E is not a sequentially m-barrelled algebra. However $C(I)$, being a Banach algebra, is sequentially m-barrelled algebra. Since E is an ideal in $C(I)$, it follows that an ideal of a sequentially m-barrelled algebra need not be of the same sort.

Example 2.4. If E is an algebra, the family of all circled, convex, absorbing and idempotent sets is a basis of neighbourhoods of 0 for a locally m-convex topology on E which is the strongest locally m-convex topology on E. Now let E be the subalgebra of $K[x]$ of all polynomials without constant term. If α is a positive real number, let $V(\alpha)$ be the circled convex envelope of $\{\alpha^m x^m : m \in \mathbb{N}\}$. The family $\{V(\alpha)\}$, with α rational and less than one, is a basis of neighbourhoods of 0 for the strongest locally m-convex topology on E. This topology is metrizable. Now, E, with this topology, is a sequentially m-barrelled algebra which is not S-barrelled, since it is metrizable but not barrelled [9].

Open Problem 2.5. Is there a sequentially m-barrelled algebra which is not m-barrelled?

Proposition 2.6. Let E be a sequentially m-barrelled algebra and F a locally m-convex algebra. If f is a multiplicative linear mapping of E into F, then f is almost sequentially continuous.

Proof. Let V be a circled m-convex neighbourhood of 0 in F. Then $f^{-1}(V)^S$, the smallest sequentially closed set containing $f^{-1}(V)$, is a sequential m-barrel in E and hence a sequential neighbourhood of 0 in E. This proves that f is almost sequentially continuous.

Proposition 2.7. Let E be a sequentially m-barrelled algebra and F a locally convex algebra. If f is a sequentially continuous and almost sequentially open, multiplicative, linear mapping of E into F, then F is sequentially m-barrelled.
Proof. Let B be sequential m-barrel in F. Then $f^{-1}(B)$ is a sequential m-barrel in E and hence a sequential neighbourhood of 0 in E. Since f is almost sequentially open, it follows that $f\{f^{-1}(B)\}^S$ is a sequential neighbourhood of 0 in F. But
$$f\{f^{-1}(B)\}^S \subseteq B^S = B$$
so that B is a sequential neighbourhood of 0 in F. Hence F is a sequentially
m-barrelled algebra.

3. Main results

In this section, we obtain an analogue of Banach-Steinhaus theorem for
sets of multiplicative linear mappings on sequentially m-barrelled algebras
and we use it to prove an analogue of the isomorphism theorem by using the
orthogonal basis.

Let E and F be locally convex spaces. Then a set H of linear mappings
from E to F is called equi-sequentially continuous if for each neighbourhood V of 0 in F, $\cap_{f \in H} f^{-1}(V)$ is a sequential neighbourhood of 0 in E.

Theorem 3.1. Let E be a sequentially m-barrelled algebra and F any
locally m-convex algebra. If H is a simply bounded set of sequentially continuous multiplicative linear mappings, then H is equi-sequentially continuous.

Proof. Let V be a closed, circled and m-convex neighbourhood of 0 in F. Then $\cap_{f \in H} f^{-1}(V)$ is a sequentially m-barrel in E and hence a sequential neighbourhood of 0 in E. Thus H is equi-sequentially continuous. ■

Corollary 3.2. Let E and F be as in 3.1. Suppose $\{f_n\}$ is a pointwise bounded sequence of sequentially continuous multiplicative linear mappings from E to F. Then $\{f_n\}$ is equi-sequentially continuous.

Corollary 3.3. Let E and F be as in 3.1. If $\{f_n\}$ is a sequence of sequentially continuous multiplicative linear mappings from E to F such that it converges pointwise to a mapping $f : E \to F$, then f is linear, multiplicative and sequentially continuous.

As an application of 3.3, we have the following analogue of the isomorphism theorem.
Theorem 3.4. Let \(E \) and \(F \) be sequentially \(m \)-barrelled algebras. Suppose \(\{x_i, \lambda_i\} \) and \(\{y_i, \mu_i\} \) be orthogonal S-Schauder bases in \(E \) and \(F \) respectively. Then \(\{x_i, \lambda_i\} \) is similar to \(\{y_i, \mu_i\} \) if and only if there exists a multiplicative sequentially topological isomorphism \(T : E \to F \) such that \(T(x_i) = y_i \) for all \(i \in \mathbb{N} \).

Proof. If such a \(T \) exists, then for all sequences \(\{a_i\} \subset C, \sum_{i=1}^{\infty} a_i x_i \) converges (in \(E \)) iff

\[
T \left(\sum_{i=1}^{\infty} a_i x_i \right) = \sum_{i=1}^{\infty} a_i T(x_i) = \sum_{i=1}^{\infty} a_i y_i
\]

converges (in \(F \)). Hence we get similarity. Conversely, we assume that the bases are similar. For each \(x \in E \), \(x = \sum_{i=1}^{\infty} \lambda_i(x)x_i. \)

We define \(T_n \) by

\[
T_n(x) = \sum_{i=1}^{n} \lambda_i(x)x_i, \quad n \in \mathbb{N},
\]

and \(T \) by

\[
T(x) = \sum_{i=1}^{\infty} \lambda_i(x)x_i;
\]

\(T \) is well-defined, one-one, onto, each \(T_n \) is sequentially continuous, linear, multiplicative, and \(\{T_n\} \) converges pointwise to \(T \). Hence, by 3.3, \(T \) is sequentially continuous, linear and multiplicative. Similarly \(T^{-1} \) is sequentially continuous. Hence \(T \) is multiplicative sequentially topological isomorphism.

Corollary 3.5. Suppose \(E \) and \(F \) in 3.4 are Hausdorff, and \(\{x_i, \lambda_i\} \) and \(\{y_i, \mu_i\} \) are orthogonal bases in \(E \) and \(F \) respectively. Then the result of 3.4 follows.

Proof. Since \(E \) and \(F \) are Hausdorff, \(\{x_i, \lambda_i\} \) and \(\{y_i, \mu_i\} \) are Schauder bases [1] and hence S-Schauder bases.

Acknowledgements

The author is grateful to the Referee for the suggestions.
References

