EXTRACTA MATHEMATICAE Vol. 15, Ntm. 2, 247—255 (2000)

Reflexive Spaces and Numerical Radius
Attaining Operators™

MARIA D. AcosTA AND M. Ruiz GALAN

Departamento de Matemdticas, Facultad de Ciencias, Universidad de Granada,
18071 Granada, Spain, e-mail: dacosta@goliat.ugr.es
Departamento de Matemdtica Aplicada, E.U. Arquitectura Técnica, Universidad de

Granada, 18071 Granada, Spain, e-mail: mruizg@goliat.ugr.es

AMS Subject Class. (1991): 47A12, 46B10, 46B03

In this note we deal with a version of James’ Theorem for numerical ra-
dius, which was already considered in [4]. First of all, let us recall that this
well known classical result states that a Banach space satisfying that all the
(bounded and linear) functionals attain the norm, has to be reflexive [16].

Before to state the results, let us recall the definition of numerical radius
and introduce some basic notation. Bx and Sx will be the unit ball and unit
sphere, respectively, of a Banach space X, X* its topological dual and L(X)
the space of all bounded and linear operators on X (endowed with the usual
operator norm). The numerical range of an operator T' € L(X) is the set of
scalars

V(T) ={«"(Tx) : (z,2") € II(X)},

where II(X) = {(z,2*) € Sx x Sx+ : *(x) = 1}. The numerical radius of
such an operator T is the real number

o(T) :==sup{|A| : A€ V(T)}
and T attains the numerical radius if
3 (2o, zg) € I(X) : |z5(Tzo)| = v(T).

The definition of the numerical range is due to Bauer [6] and one can find a
good survey of the properties of numerical ranges in the monographs [10, 11].
As an example of these properties, let us say that the numerical radius is a
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continuous seminorm less than the norm. In the complex case, it is, in fact,
a norm equivalent to the usual operator norm (Bohnenblust-Karlin Theorem
[10, Theorem 4.1]).

It will be useful for us to use the set

I(X) := {(z,2") € Sx x Sx- : |2*(2)| = 1},
for which we have
o(T) = sup{Re z*(Tz) : (x,z*) € II(X)}.

It is clear that an operator T" attains its numerical radius if, and only if, there
exists an element (g, zf) € II(X) such that z%(Txz¢) = Re zf(Txzo) = v(T).
James’ Theorem can be stated in terms of operators as follows. A Banach
space is reflexive if, and only if, each rank-one operator attains the norm.
Then, a version of this result for numerical radius would characterize reflexive
Banach spaces as those Banach spaces for which every rank-one operator
attains its numerical radius. In [4] this version of James’ Theorem was proved:

THEOREM 1. A Banach space is reflexive provided that each rank—one
operator on it attains its numerical radius.

In fact, by refining the arguments used in [4], it can be showed that reflex-
ivity is implied by the assumption that every rank-one operator whose range
is contained in a fixed one-dimensional subspace attains its numerical radius.
The proof of Theorem 1 given in [4] uses a “non sequential” version of Simons’
inequality (see [23]). Here we will give an easier proof of the above result in
the case that the Banach space is separable. However, the argument used in
this special case contains the essential idea of the general one and it also has
the advantage that Simons’ inequality can be used instead of a quite general
and more intricate inequality used in [4, Theorem 1].

In the following, co will denote the convex hull of a subset in a linear space
and /., (B) will be the Banach space of real-valued bounded functions on B.

LEMMA 1. (Simons’ inequality [22]) Let B be a set, A C B and {f,} a
bounded sequence of functions in ¢ (B) such that for any sequence {t,} of
non negative real numbers with )" 7 | t,, = 1 there exists a € A satisfying

Ztnfn(a) = Sup Ztnfn(b)
n=1

beB n=1
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Then
suplimsup fp(a) > inf sup{g(b): b € B}.
acA n g€Co{fn}

E. Oja got a slightly different proof of this inequality by Simons [19].
Recently, R. Deville and C. Finet got some improvement of Simons’ inequality
(see [15]). Also, a book by S. Simons [24] including some non sequential
versions of Simons’ inequality has appeared. These more general results, called
minimax theorems, can be used to characterize weak compactness (see [23,
24)).

We now consider a stronger statement than Theorem 1:

THEOREM 2. Let X be a Banach space such that for some xog € Sx the
operator z* ® x( attains its numerical radius, for any x* in X*, then X is
reflexive.

Proof of the separable case. We will argue by contradiction. So, let us
suppose that X is separable and not reflexive but every operator z* ® xg
attains its numerical radius.

The Bishop-Phelps Theorem [8] (density of the set of norm attaining func-
tionals for any Banach space) and the non reflexivity of X allow us to find
(x5, z5*) € II(X™) satisfying

|zg™ — ol <1 and zyt ¢ X,
S0,
|20 (20) — zo(z0)| <1
and then, taking into account that z{*(z§) = 1, we have

zg(zo) # 0 and azy(zo) = 1, (1)

for some scalar @ # 0. Now by virtue of the Hahn-Banach Theorem, there
exist ¢ € Sx««+ and r > 0 such that

o(r) =0, VzeX

and
Re ¢(zy*) > r.

X is separable, so in X*** the topology of pointwise convergence on X U{z{*
is metrizable on bounded sets. Since Sy« is w*-dense in Sx«««, there is a
sequence {z}} in Sx- converging to ¢ in o(X**, X U {z{*}). Then

(z5(2)} >0, VoeX 2)
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and we can assume that
Re z5*(z)) >r, VneN (3)
Now we make use of Simons’ inequality, taking as sets
A:=1I(X) and B:=I[(X")

(A is considered as a subset of B by the natural inclusion of X into X**
and by considering the reverse order) and the sequence of bounded functions

A

fn  I(X*) — R given by
fa(z®, ™) = Re ™ (z)x" (o), ((z*,2"") € ﬂ(X*))

We check that the assumption in the previous lemma is satisfied. For each
sequence {t,} with 0 <t, <1and Y, ¢, =1 we clearly have

Ztnfn(x*,x**) = Re z** (Z tnm,’;) ¥ (xo), V(z*,z™) e I(XT).
n=1 n=1

We are assuming that the rank-one operator (Y 7 t,z%) ® zo attains its
numerical radius and it always happens for any operator T' the coincidence
v(T) = v(T*) (see [11, Corollary 17.3]). Then the convex series > 7, t,fn
attains the supremum at a point of A. So we obtain

sup  limsup Re z;, (z)z™ (z0)
(z,z*)ell(X) 7 (4)
> inf sup Re z** (y*)z* (o).
YTECOLTLY (px pon)eli(X)

Now then, by (2)

sup  limsupRe z) (z)z"(20) =0 (5)
(@,2*)eT1(X) n

and by virtue of (3) and (1), if y* € co{z};} then

*k * a
Re =" (y") —

|

r
$3(5E0) > m,
SO r

inf sup Re 2™ (y*)z*(z9) > —
y*€eco{z;} (z*,2**)ell(X*) |a|
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To sum up, from (4), (5) and (6) we have

but r > 0 and we have a contradiction. |

Now, we will consider the reverse implication in James’ Theorem for nu-
merical radius. In a reflexive Banach space, it is obvious that any functional
attains the norm, that is, any rank—one operator on it attains the norm. By
considering the numerical radius (instead of the norm), we proved in [4] that
a reflexive Banach space with basis can be renormed so that some rank—one
operator does not attain its numerical radius. Here we will try to explain the
idea of the proof.

THEOREM 3. Any infinite-dimensional Banach space can be renormed so
that there is a rank-one operator not attaining its numerical radius.

Idea of the proof. If the space is not reflexive, then by Theorem 1, in fact,
the previous statement holds for any equivalent norm.

So, we will assume that the Banach space, call it X, is reflexive. If one
tries to construct an operator not attaining the numerical radius, things could
be easier if one gets for this operator the coincidence of the numerical radius
and the norm (otherwise it is difficult to get consequences by assuming that
the operator attains its numerical radius). Let us observe that in any infinite-
dimensional and reflexive Banach space that coincidence does not hold for
every rank-one operator (see [18, Corollary 5]). But for normalized elements
2o € Sx, zj € Sx=, equality

v(g ® 20) = [0 ® 20l = 1

holds immediately if |z§(z0)| = 1, since v(z§ ® 2p) is attained at (zo,z() €
I[I(X). The original idea consisted on constructing (after renorming) such
an operator for which the numerical radius is attained just in the described
situation. Following this idea, if v(z§ ® zp) = 1 and the numerical radius is
attained at (z,z*) € TI(X), then, it happens

|27 (20)] = 1 = |ag ()]

and if we rotate the elements z and z* we get to a new couple still in II(X)
and satisfying
' (20) = 1 = wp (). (7)
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If we want that equalities (7) determine z* (after rotation), it is enough to
assume that zp is a smooth point. Let us call z; the unique point of the unit
sphere of X* such that zj(zp) = 1. The smoothness of zy gives us z* = z;.
Since (,z3) = (z,2*) € TI(X), £ will be uniquely determined (up to rotation)
if we assume that zj is also smooth and so z = Az (for some |A| =1) and

(z,2") = (Az0, 25)-

By using again (7), z§(Az0) = zj(z) = 1, then the smoothness of 2y gives us
Azfy = 2§ = z*. Finally, the couple (z,z*) is, unless a rotation, (zq, zj).
So, it would be enough to construct the operator zj ® 2 satisfying

(2o ® 20) = [0l = llzoll = 1,

with zg, z5 smooth and so that =y ¢ Kz, for some zy € Sy such that
z§(zg) = 1.

Of course, if the numerical radius of the operator is 1, then, there should
be a sequence {(zn,z;)} C II(X) so that

{zn(20)} = 1, Alzg(za)]} = L. (8)
By using the inequality
2 > ||zn + 20|l = zp(zn + 20)

and (8) it follows that {|lz, + 20|} — 2. Also, if z¢ is a w-cluster point of
{zn}, (8) will also give us |z§(zo)| = 1.

Conversely, if {||z, + z0]|} — 2 and {z,} converges in the w-topology
to an element zg in the unit sphere, then there is a sequence of norm one
functionals {z}} so that the sequences {z} (z,)} and {z}(z¢)} converge to 1.
The Bishop—Phelps—Bollobis Theorem [9] allows us to assume that, in fact,
z}(zp) = 1 and so, if we fix an element 2§ in the unit sphere of the dual so
that zj(zo) = 1, we get

limzj(zy) = z5(z0) = 1, limz; (z0) = 1,
n
and so v(z} ® z9) > sup, |z§(zn)z) (20)| > 1, that is, the numerical radius of
the operator is 1. 1

In the next statement proved in [4, Proposition 2] we collect the conditions
we have just mentioned in order to construct a rank-one operator not attaining
its numerical radius:
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PROPOSITION 1. Let X be a Banach space and assume that there exist
20, %y € Bx and x¢ € Sx satisfying

(i) {llzn + 20ll} — 2,

(ii) 2o and z§ are smooth points, where z§ is the unique support functional
of Bx at zg,

(iii) {zn} — zo weakly and
(lV) Zo ¢ Kz(].

Then there exists xj € Sx+ such that the operator zj ® 2o does not attain its
numerical radius.

In a reflexive Banach space with a (normalized) Schauder basis {(ey, €};)}
it is easy to renorm in such a way that the conditions in the above proposition
hold. For instance, we can take zg = ey, £g = e2 and z,, = es 4+ e,. Clearly
(iv) is satisfied and also does (iii), since the basis is shrinking in this case. In
order to get conditions (i) and (ii) it suffices to construct a norm for which the
unit ball contains ellipsoidal sections containing zy = e;. This idea suggests
to define a new norm by using the Minkowski functional of the set

1
B :c0{3—KBX Uaco{eg,eq + €, :n > 3}UA},
where By is the unit ball of the original norm, K is the basic constant of
{en}, aco denotes closed absolutely convex hull and A is the ellipsoid given by

S CAC
n—

for some sequence {e,} € ¢; satisfying ey = 1 and 41 < &,, Vn € N. A is
compact and B is the closed unit ball of an equivalent norm satisfying the
previous conditions (see [4, Example]).

The proof of the general renorming result can be found in [5].

Let us point out that there is a collection of results about denseness of
numerical radius attaining operators (see for instance [7, 13, 21, 1, 2, 14]). It
can be observed that any time a result is known for the more classical case,
by considering norm attaining operators, there is also an appropriate version
for the numerical radius. For instance, this happens with the original result
by Lindenstrauss of denseness of operators whose second adjoints attain their
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norm (see [17, 25] and [3]). It also holds for the result by Bourgain [12] and
the parallel version for numerical radius [3], the counterexample [17] and [21]
and the renorming results [20] and [1]. James’ Theorem seems to be the first
known result that holds for the norm but not for the numerical radius.
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