EXTRACTA MATHEMATICAE Vol. 15, Nim. 1, 121143 (2000)

A Characterization of Commutativity for
Non-Associative Normed Algebras

M. BENSLIMANE!, L. MESMOUDI! AND A. RODRIGUEZ PALACIOS?

! Département de Mathématiques, Faculté des Sciences, B.P. 2121- Tétouan, Maroc
2 Departamento de Andlisis Matemdtico, Facultad de Ciencias,
Universidad de Granada, 18071-Granada, Spain

(Research paper)

AMS Subject Class. (1991): 46H05, 46H70, 46L.70 Received December 4, 1999

1. INTRODUCTION
A celebrated Theorem of C. LePage [12] reads as follows.

(1) If A is a complete normed associative complex algebra with a
unit, and if there exists a positive constant k satisfying |lyz| <
k||zy|| for all z,y in A, then A is commutative.

Actually, minor changes on the proof of LePage’s theorem allow to show
the next more general result (see [2, Proposition 15.5]).

(2) Let A be a complete normed associative complex algebra with
a unit e, and @ be a (possibly non-associative) product on A sat-
isfying

1. x®e =z for every x in A, and

2. ||z ©y|| < k||zy|| for some positive constant k and all z,y in
A.

Then ® coincides with the product of A.

In this paper we mainly deal with the natural question if the requirement
of associativeness in Assertions (1) and (2) above can be removed. For any
complex algebra A, denote by N(A) the set of those elements x in A such
that the spectrum of the operator of right multiplication by z is countable.
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As main result, we prove in Corollary 2.2 that associativeness can be actually
removed in (2) (and hence also in (1)) whenever the linear hull of N(A) is
dense in A (for instance, whenever A is finite-dimensional). As an application
of the main tool for the above result, we also prove that associativeness can be
removed in (1) whenever A is either a nondegenerate non-commutative Jordan
algebra with essential socle (Corollary 3.5) or a non-commutative JB*-algebra
(Corollary 4.5). In the last case, the existence of a unit for A is not required.
A discussion about the methods of proof for the above results leads us to find
that associativeness can be relaxed in (2) to right alternativeness (Proposition
5.4), and in (1) to split quasiassociativeness (Corollary 5.9).

The concluding section of the paper is devoted to associative algebras.
We prove that the assumption in (1) that A has a unit can be drastically
relaxed. In fact (see Corollaries 6.2 and 6.3) Assertion 1 remains true if that
assumption is replaced by anyone of the following:

1. A? is dense in A.

2. A has zero annihilator.

2. THE MAIN TOOL

Given a complex Banach space F and a bounded linear operator T on F,
the Banach isomorphism theorem ensures that the spectrum of T relative to
the Banach algebra BL(E) of all bounded linear operators on E coincides
with the spectrum of T relative to the algebra of all (possibly unbounded)
linear operators on E. We simply denote it by Sp(T'). For an element z in an
algebra A, the symbol R, will stand for the operator of right multiplication
by x on A. The main tool for our work is the following theorem.

THEOREM 2.1. Let A be a (possibly non-associative) complete normed
complex algebra with a right unit e, E complex Banach space, h: Ax A — E
a bilinear mapping satisfying ||h(x,y)| < k|zy|| for some positive constant k
and all z,y in A, and z be in A such that Sp(R,) is countable. Then, for
every x in A, we have h(x,z) = h(zz,e).

Proof. Replacing z by z — ae, for a suitable a in C, we can assume that
o0& Sp(R,). Then K := {u~!: pu € Sp(R,)} is a countable compact subset
of C. Putting  := C\ K, and considering the analytic mapping ¢ : 2 — A
given by ¢()) := e — Az, we realize that, for every A\ in Q, the operator R,
is bijective. If for y in A we denote by T}, the continuous linear mapping from
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A to E defined by Ty(a) := h(a,y), then the assumption on h leads to the
inequality ||,z (a)]] < k||Ry(a)|| for all X in © and a in A. Equivalently,
we have ||T,) o R;(IA) ()] < kljz|| for all A in © and z in A, and hence

[ Tpn) © R;(l)\) || <k for every X in Q. Now, let us fix an arbitrary continuous
linear functional f on the complex Banach space BL(A, E) of all bounded
linear mappings from A into E. Then the function W : A — f(T,(y) o R;l)\))
from Q to C is analytic and bounded. Since 2 is the complement in C of
a countable compact set, it follows from an extended version of Liouville’s
theorem (see for instance [20, Exercise 10.(a), p. 324]) that ¥ is constant. As
a consequence, we have f(T,oR,—T,) = ¥'(0) = 0. Since f is arbitrary in the
dual of BL(A, E), the Hahn-Banach theorem yields the equality T, = Teo R,
that is, h(z,2) = h(zz,e) for every z in A. |

Let E be a vector space. By a product on E we mean any bilinear mapping
(z,y) > z @y from E X E into E. Given a product ® on E and an element
u in F, we say that ® is right u-admissible if the equality z ® © = x holds for
every z in E. The next result is a direct consequence of Theorem 2.1.

COROLLARY 2.2. Let A be a complete normed complex algebra with a
right unit e, and ® be a right e-admissible product on (the vector space of)
A satistying ||z © y|| < k||zy|| for some positive constant k and all x,y in A.
If the linear hull of the set

{z € A: Sp(R;) is countable}

is dense in A (for instance, if A is finite-dimensional), then ® coincides with
the canonical product of A.

In the case that e is in fact a (two-sided) unit for the algebra A, the
product ® on A defined by x ® y := yz is right e-admissible, hence Corollary
2.2 applies to get the next variant of LePage’s theorem.

COROLLARY 2.3. Let A be a complete normed complex algebra with a
unit. If the linear hull of the set

{z € A: Sp(R,) is countable}

is dense in A, and if there exists k > 0 such that ||yz| < k||zy|| for all z,y in
A, then A is commutative.
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3. APPLICATIONS TO JORDAN ALGEBRAS

Jordan algebras are defined as those commutative algebras satisfying the
“Jordan identity” (z2y)z = 2?(yz). Let A be a Jordan complex algebra with
a unit . An element z in A is said to be invertible in A if there exists y
in A satisfying zy = e and 22y = z. The spectrum Sp(A, z) of an arbitrary
element z in A is defined by the equality

Sp(A, z) :={X € C: z— Xe is not invertible in A}.

When A is complete normed we know that, for every z in A, the inclusion

Sp(R;) C - (Sp(A, z) + Sp(4, 2))

DN =

holds [13, Theorem 1.2]. Now, the next result follows from Theorem 2.1.

COROLLARY 3.1. Let A be a complete normed Jordan complex algebra
with a unit e, £ a complex Banach space, h : A X A — E a bilinear mapping
satisfying ||h(z,v)|| < k||zy|| for some positive constant k and all x,y in A,
and z be in A such that Sp(A,z) is countable. Then, for every x in A, we
have h(z,z) = h(zz,e).

As a consequence, if A is a complete normed Jordan complex algebra with
a unit e, if @ is a right e-admissible product on A satisfying ||z @ y|| < k||zyl|
for some positive constant k£ and all x,y in A, and if the linear hull of the set

{z € A: Sp(A, z) is countable}

is dense in A, then ® coincides with the canonical product of A.

For every algebra A, let us denote by A" the algebra consisting of the
vector space of A and the product z.y := %(my + yz). The algebra A is
said to be Jordan admissible if AT is a Jordan algebra. An element z in a
Jordan admissible complex algebra A with a unit is said to be invertible in
A if it is invertible in AT. Consequently, for arbitrary z in such an algebra
A, we put Sp(A,z) := Sp(AT,z). The convention just established has its
roots in the fact that, if A is an associative algebra with a unit, then the
invertible elements in A (in the usual associative meaning) are nothing but
the invertible elements in the Jordan algebra AT (in the sense provided at
the beginning of this section) [10, p. 51]. Recall that, given a bounded linear
operator T on a complex Banach space FE, the approximate point spectrum of
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T, 04p(T), is defined as the set of those complex numbers A such that there is a
sequence {z,} of norm-one elements in E satisfying lim,_, || Az, — T(z,)|| =
0. According to [1, Theorem 57.7], 04,(T") contains the boundary of Sp(T).

THEOREM 3.2. Let A be a complete normed Jordan admissible complex
algebra with a unit, and z be in A such that Sp(A, z) is countable. Assume
that there exists k > 0 satisfying ||yz| < k|lzy|| for all z,y in A. Then z
commutes with every element in A.

Proof. Let R} denote the operator of multiplication by z on A*. Then,
for every z in A and all complex numbers A\, we have

1
Az — R (z)| = ‘ Az — §($z + zx)

< Hlm_m) < ~(1+k)|Az - R (o).

2

DN | =

1
+ HE(A:E — 21)

Therefore o,,(R,) (and hence the boundary of Sp(R,)) is contained in Sp(R]).
Since Sp(A,z) (= Sp(AT, 2)) is countable, it follows from the already known
inclusion

Sp(RY) C 5(Sp(AT,2) + Sp(A™, 2))

DN | =

that Sp(R.) is countable too. Now, we can apply Theorem 2.1, with F := A
and h(z,y) := yz for all z,y in A, to obtain that z commutes with every
element in A. |11

An algebra A is said to be quadratic if it has a unit e and, for every z in
A, the subalgebra of A generated by {e, z} has dimension at most two. If A is
a quadratic complex algebra, then A is Jordan admissible and every element
in A has a finite spectrum. Therefore we have:

COROLLARY 3.3. Let A be a complete normed quadratic complex algebra
such that there exists k > 0 satisfying ||yz| < k||xzy| for all z,y in A. Then
A is commutative.

Among Jordan admissible algebras, the so called non-commutative Jordan
algebras become specially relevant. Non-commutative Jordan algebras can be
defined as those Jordan admissible algebras satisfying the “flexibility condi-
tion” (zy)r = z(yz) [21, p. 141]. Let A be a flexible algebra. Then, for
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every a in A, the mapping © — ax — za is a derivation of AT [21, p.146], and
therefore the set

Z :={z € A: z commutes with every element in A}

is a subalgebra of AT. Since Z is a commutative subset of A, it is in fact a
subalgebra of A. Now, Theorem 3.2 leads to the following corollary.

COROLLARY 3.4. Let A be a complete normed non-commutative Jordan
complex algebra with a unit. If the subalgebra of A generated by the set

{z € A: Sp(A, z) is countable}

is dense in A, and if there exists k > 0 such that ||yz| < k||zy|| for all z,y in
A, then A is commutative.

Let A be a non-commutative Jordan algebra. For z in A, we denote by
U, the operator on A given by U,(y) := z(zy + yx) — %y for all y in A. For
later application we note that, if z is in A, then the equality U, = U, holds,
where U means the Ug-operator relative to the algebra A™. A is said to be
nondegenerate if U, = 0 implies x = 0. Vector subspaces I of A satisfying
Ur(A) C I are called inner ideals of A. The socle of A is defined as the sum
of all minimal inner ideals of A. If A is nondegenerate, then the socle of A is
a (two-sided) ideal of A ([14], [6]).

COROLLARY 3.5. Let A be a complete normed nondegenerate non-commu-
tative Jordan complex algebra with a unit and essential socle. Assume that
there exists k > 0 satisfying |lyz|| < k||zy|| for all z,y in A. Then A is
commutative.

Proof. By [7, Theorem 1], every element in the socle of A has a finite
spectrum. Then, by Theorem 3.2, the socle of A is commutative. Therefore,
by [5, Corollary 7], A is commutative. I

4. THE CASE OF NON-COMMUTATIVE JB*-ALGEBRAS

A celebrated theorem of 1. Kaplansky [11, Appendix III, Theorem B] as-
serts that a C*-algebra A is commutative if (and only if) A has no non zero
elements z with 22 = 0. This criterion of commutativity for C*-algebras is
very powerful, as shown in particular by the next LePage-type application.



COMMUTATIVITY FOR NON-ASSOCIATIVE NORMED ALGEBRAS 127

Remark 4.1. Let A be a (possibly non unital) C*-algebra such that there
exists k > 0 satisfying ||yz| < k||zy|| for all z,y in A. Then A is commutative.

Proof. Let z be in A satisfying 2> = 0. Then we have

121° = llz"211% = [I(z"2)*|| = 2" 22"22" 2] = ||(22"2)" (22"2)|

= |l2z*2|* < K2||2°2%|” = 0,
and therefore z = 0. By Kaplansky’s theorem, A is commutative. [

The main aim in this section is to prove that the result in Remark 4.1
remains true if we relax the assumption that A is a C*-algebra to the one that
A is a non-commutative JB*-algebra. Non-commutative JB*-algebras are
defined as those complete normed non-commutative Jordan complex algebras
A with a conjugate-linear algebra involution * satisfying ||U,(z*)|| = ||z||* for
every z in A. Non-commutative JB*-algebras arise in a natural way in Func-
tional Analysis. Indeed, if a norm-unital complete normed non-associative
complex algebra A is subjected to the geometric Vidav condition characteriz-
ing C*-algebras in the associative context [2, Theorem 38.14], then A is a non-
commutative JB*-algebra [18]. Let A be a non-commutative JB*-algebra. It
is known that the set Symm(A) of all *-invariant elements of A (regarded in
the natural way as a closed real subalgebra of A1) is a JB-algebra [8, Propo-
sition 3.8.2]. The positive elements in the JB-algebra Symm/(A) [8, 3.3.3] are
called positive elements of A. The next lemma is the key tool in the proof of
the desired LePage-type theorem for non-commutative JB*-algebras.

LEMMA 4.2. Let A be a non-commutative JB*-algebra, M a closed ideal
of A, and X\ be in C. Then, for x,y in A, we have

IAzy + (1 — Nyz + M| < inf{| Mz +m)y + (1 — Ny(z +m)||: m € M}
S A+ T=ADIAzy + (1 = Nyz + M|

Proof. Let x,y be in A. Then, clearly, the first inequality in the statement
holds. To prove the second inequality, let us fix ¢ > 0. For elements u,v in
any complex algebra containing A as a subalgebra, we put

ulv := Auv + (1 — Nvu.

Then we can choose ¢ in M with
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120y + qll < [|20y + M|| + €.

We claim that there exists a positive element p in M satisfying |[p|| < 1 and

llg — pOql| + [[pO(z0y) — (pOz)Dy|| < e.

Since M is *-invariant [15, Corollary 1.11] (hence a non-commutative JB*-
algebra), we can apply [8, Proposition 3.5.4] to the JB-algebra Symm(M) to
get a net {ey}rea of positive elements of M such that |je|| < 1 for all A in
A, and lim{ey.m} = m for every m in M (where, as usual, the symbol ”.”
stands for the product of A™). On the other hand, the bidual A** of A can be
regarded as a non-commutative .JB*-algebra which enlarges A [15, Theorem
1.7] and whose product becomes separately w*-continuous [15, Theorem 3.5].
Then the bipolar M°° of M in A** is a w*-closed ideal of A**, and hence
we have M°° = A**e for some central *-invariant idempotent e in A** [15,
Theorem 3.9]. Since e is a unit for M°°, it follows from the separate w*-
continuity of the product of A** and the w*-density of M in M°° that e is
the unique possible w*-cluster point of the net {e)} in A**. Since the closed
unit ball of A™ is w*-compact, we actually have that w* —lim{e)} = e. Now,
note that the product O on A** is separately w*-continuous, and regard the
space A™ x A** as the bidual of the Banach space A x A with the sum norm.
Then in A** x A** we have

w* —lim{(q — exOq, ex0(z0y) — (exOz)Oy)}
= (¢ — e0q, e0(z0y) — (eDz)Oy) = (0,0),

where the last equality holds because e is a unit for (M°°,0) and a central
element of (A**,00). Since the net {(¢ —exOq, exD(20y) — (exOz)Oy) } lies in
A x A, it follows that {(q — exOq, exO(z0y) — (exOz)0y)} converges to (0, 0)
in the weak topology of A x A, and therefore, for a suitable element p in the
convex hull of the set {e): A € A}, we have

lg — pOql| + [[pE(z0y) — (pB2)Oy|| <.
Clearly, such a p lies in M, is positive, and satisfies ||p|| < 1. Now that the

claim is proved, recall that A** has a unit 1 [15, Corollary 3.3] which is also
a unit for (A**,0), so that we can write
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inf{[[(z + m)Oy|: m € M} <|[(z — pOz)Oy||
< [|z0y — pO(z0y) || + [[pB(20y) — (pUz)Oy||
= [[(1 = p)O(z0y + q) — (1 — p)Ogql| + [[pO(z0y) — (pOz)Oy||
<A+ 1= ADIz8y + gl + llg — pOql| + |[pE(20y) — (p0z)Cy||
<A+ 1=ADz0y + M| +€) +e.

By letting € — 0, we obtain

inf{[[(z + m)0y|: m e M} < (| A| + [ 1 =X ])|z0y + M|.
1

Taking A = 1 in the above lemma, it follows that, if A is a non-commutative
J B*-algebra, if M is a closed ideal of A, and if x,y are in A, then the equality
lzy + M|| = inf{||(x + m)y||: m € M} holds. In the proof of the following
lemma, M5(C) will denote the algebra of all 2 x 2 complex matrices endowed
with its natural structure of C*-algebra (when it is identified with the algebra
of all bounded linear operators on the two-dimensional complex Hilbert space).

LEMMA 4.3. Let A be a C*-algebra such that there exist A in C\{3} and
k > 0 satisfying ||[Ayz + (1 — N)zy|| < k|[Azy + (1 — N)yz|| for all z,y in A.
Then A is commutative.

Proof. Assume for the moment that A has a unit. If B denotes the complex
algebra consisting of the vector space of A and the product OJ given by zUOy :=
Azy—+(1—A)yz, then the unit of A is a unit for B, and, up to the multiplication
of the norm of A by a suitable positive number, B becomes a complete normed
algebra. Moreover, since Bt = A", B is Jordan admissible and, for z in
A, we have Sp(A,z) = Sp(B,z). Now take z in A such that 22 = 0. Since
Sp(B, z) = {0} and ||yOz| < k||z0y|| for all z,y in B, it follows from Theorem
3.2 that z (-commutes with every element of B. Applying that A # % , we find
that z commutes (in the usual sense) with every element of A, in particular
with z*. Therefore we have |z||* = |z*z||? = ||(z*2)?|| = ||2%(z*)?|| = 0,
hence z = 0. Keeping in mind Kaplansky’s theorem, the proof would be
concluded in the unital case. However, since the consideration of the non
unital situation will need a refined version of Kaplansky’s theorem proved in
[9], we remove the incidental assumption that A has a unit, and limit ourselves
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to codify a straightforward consequence of the above argument. Indeed, since
the condition

[Ayz + (1 — Nay|| < k|[Azy + (1 — A)yz|| for all z,y in A

is inherited by any subalgebra of A, and the C*-algebra Ms(C) has a unit
as well as non zero elements z with 22 = 0, A cannot contain M(C) as
a C*-subalgebra. According to [9, Corollary 9], to conclude the proof it is
enough to show that A also cannot contain as a C*-subalgebra the C*-algebra
Co([0,1], M5(C)) of all continuous mappings from [0, 1] to M3(C) vanishing at
zero. Assume by the contrary that Co([0, 1], M2(C)) is a C*-subalgebra of A,
so that the inequality

Ay + (1 = Nayll < kl[Azy + (1 = Nyz||
is true for all z,y in Cy([0, 1], M2(C)). Put
M = {x € Cy([0,1], M2 (C)): z(1) = 0}.

Since M is a closed ideal of Cy([0,1], M2(C)), we can apply Lemma 4.2 to
obtain

Mz + (1 = N)zy + M| < inf{||dy(z +m) + (1 = X)(z +m)y||: m € M}
< kEinf{|| Az + m)y + (1 — Ny(z +m)||: m € M}
SE(A+[1=ADIAzy + (1 — Nyz + M|

for all z,y in Cy([0, 1], M2(C)). Since Co([0, 1], M2(C))/M is isometrically iso-
morphic to Ms(C), we deduce that there exists k' ;== k(| A |+ |1 —=X]|) >0
satisfying ||Ayz + (1 — Nzy| < K'|[Azy + (1 — Nyz| for all z,y in Ms(C).
But we have seen in the first part of the proof that such a situation cannot
happen. 1

THEOREM 4.4. Let A be a non-commutative J B*-algebra such that there
exist A in C\{3} and k > 0 satisfying || \yz+ (1 — N)zy|| < k||JAzy+ (1—N)yz||
for all x,y A. Then A is commutative.

Proof. As we have seen in the proof of Lemma 4.3, Lemma 4.2 implies
that, if M is a closed ideal of A, and if «, f are in A/M, then we have

ABa+ (1= NaB| < K[[xap + (1 = X)Ball,
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where k' := k(] A | + | 1—X|). Now, the structure theory for non-commutative
JB*-algebras (see [15, Lemma 6.3 and Theorem 6.4] and [16, Corollary 1.13
and Theorems 3.7 and 4.2]), together with the facts that quotients of non-
commutative JB*-algebras are non-commutative JB*-algebras [15, Corollary
1.11] and that injective *-homomorphisms between non-commutative JB*-
algebras are isometries [23], provides us with a family {M, };c; of closed ideals
of A (namely, the kernels of the so-called type I factor representations of A)
satisfying the following two properties:

1. NefM; = 0.

2. If, for 4 in I, the algebra A/M; is neither commutative nor quadratic,
then the next situation occurs:

(Si) There exists a C*-algebra A; such that A/M; = A; as involutive
Banach spaces, and the product of A/M; is related to that of A; (denoted by
o, say) by means of the equality aff = ;a0 8+ (1 — pu;)B o o, where p; is a
fixed real number with % < p; < 1.

Let 7 be in I enjoying the situation (S;). Putting

1 1 1

A= 54200 5)m— 5),

for a, f in A/M; we have
Aaf+ (1 —XN)pa= aofB+ (1—X\)Boa,

and hence [[Nifoa+ (1 —N)ao ] < K| Naocp+ (1 — X)B o . Since
(A;,0) is a C*-algebra and \; # % , it follows from Lemma 4.3 that A; is
commutative. Then the relation between the products of A/M; and A; shows
that both products coincide, and hence A/M; is commutative too.

Now, let 7 be in I such that A/M; is a quadratic algebra. If B; denotes
the complex algebra consisting of the vector space of A/M; and the product
O given by a8 := Aaf + (1 — \)Ba, then, up to the multiplication of the
norm of A/M; by a suitable positive number, B; becomes a complete normed
quadratic algebra. Since the inequality ||f0«| < &'||edf|| holds for all e, 5 in
B;, it follows from Corollary 3.3 that B; is commutative. Since \ # %,A/Mi
is commutative too.

From the last two paragraphs and Property 2 of the family {M;};cr it
follows that A/M; is commutative for every i in I. Finally, from Property 1
of that family we deduce that A is commutative. [
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COROLLARY 4.5. Let A be a non-commutative JB*-algebra such that
there exists k > 0 satisfying |lyz|| < k|lzy|| for all z,y in A. Then A is
commutative.

Remark 4.6. Non-commutative JBW *-algebras are defined as those non-
commutative JB*-algebras which are dual Banach spaces. If A is a non-
commutative JBW *-algebra, then A has a unit [15, Corollary 3.3] and is the
closed linear hull of its *-invariant idempotents (indeed, Symm/(A) is a JBW-
algebra [4], and [8, Proposition 4.2.3] applies). Since idempotents have a finite
spectrum, when A is actually a non-commutative JBW *-algebra Corollary 4.5
follows directly from Theorem 3.2. The same comment applies to Theorem 4.4
(indeed, apply Theorem 3.2 to the algebra obtained by replacing the product
of A by the one (z,y) — Azy + (1 — A)yz). It is also worth mentioning
that, if A is a (commutative) JBW*-algebra, and if e denotes the unit of
A, then, by Corollary 3.1, every left e-admissible product ® on A satisfying
llz ® y|| < Eljzy]| for some positive constant & and all z,y in A must coincide
with the canonical product of A.

5. DISCUSSION OF RESULTS AND METHODS

Let us recall the main question we have dealt with.

PROBLEM 5.1. Let A be a complete normed complex algebra with a unit,
and assume that there exists a positive constant k satisfying ||yz|| < k||zy||
for all z,y in A. Must A be commutative?

More ambitious questions are the following.

PROBLEM 5.2. Let A be a complete normed complex algebra with a right
unit e, and @ be a right e-admissible product on A satisfying

lz ©yll < kljzy

for some positive constant k£ and all z,y in A. Does ® coincide with the
canonical product of A7

PROBLEM 5.3. Let A be a complete normed complex algebra with a right
unit e, F a complex Banach space, and h : A x A — FE a bilinear mapping
satisfying ||h(z,y)| < k||zy| for some positive constant k and all z,y in A.
Does the equality h(z,y) = h(zy,e) holds for every z,y in A?
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According to LePage’s argument and the results in this paper, the answer
to Problem 5.3 (and hence also to Problems 5.2 and 5.1) is affirmative if
A is either associative or finite-dimensional. Therefore, most probably, the
answer must remain affirmative without any additional requirement. Actually,
LePage’s argument and our techniques share a common idea, which we explain
in what follows.

Let A be a complete normed complex algebra A with a right unit e. For
z in A, consider the following property

(P.) There exists a couple (X2, ), where § is the complement in C of a
countable compact set such that 0 € €, and ¢ : Q) — A is an analytic mapping
satisfying:

1. p(0) =e.
2. ¢'(0) = 2.
3. The operator R,y is bijective for every A in ).

Then, looking at the proof of Theorem 2.1, we realize that (P,) holds
whenever Sp(R,) is countable and 0 ¢ Sp(R,), and that Problem 5.3 has an
affirmative answer whenever A is the closed linear hull of the set

{z € A: z satisfies (P,)}.

Thus, Problem 5.3 answers affirmatively in the finite-dimensional case. If
A is associative, then Problem 5.3 answers affirmatively because every element
z in A satisfies the improved version of (P,) given by
(P3) There exists an analytic function ¢ : C — A such that ¢(0) = e,
¢'(0) = 2, and the operator R, is bijective for every X in C.
Indeed, when A is associative and z is in A, the analytic mapping ¢ : C —
A defined by
[o.@] An .
(A i=e+ Z 7
n=1
satisfies all the requirements in (P} ) (note that, thanks to the equality R ) =
exp(AR;), R,y is certainly a bijective operator for every A in C). A similar
privilege situation happens in the more general case that A is right alternative
(i.e., the equality yz? = (yz)z holds for all z,y in A), as we see in the sequel.
For z in such an algebra A, the right alternative identity reads as R,> = (R;)?,
so that, after linearization, we obtain R;y ., = R;Ry + RyR, for all z,y in
A. Now take z in A, and define a sequence {z,} in A by z; = z and 2,41 =
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+(22n + z,2). 1t follows from an elementary induction that R,, = (R.)" for

every n in N, and hence the analytic mapping ¢ : C — A defined by
O yn
oA =e+ Z én
n=1
satisfies ¢(0) = e, ¢'(0) = 2z, and R,y = exp(AR;). Therefore we can
formulate the result which follows.

PROPOSITION 5.4. Problem 5.3 has an affirmative answer whenever A is
right alternative.

The following example shows that the privilege situation for the property
(P,) occurring in the right alternative setting cannot be expected in general.

ExaMPLE 5.5. Let A be the unital Jordan complex algebra whose vector
space is C® and whose product is defined by

(1, 22, 23) (Y1, Y2, Y3) = (2191 + Z2y2, T1Y2 + T2y1, T1Y3 + T3Y1)-

A straightforward calculation shows that, for z = (1, 29, z3) in A, the equality
det(R;) = z1(z? — 23) holds. Let us fix z = (21,22, z3) in A satisfying (P}), so
that there are complex valued entire functions 1, 9, @3 satisfying ¢1(0) = 1,
2(0) = ¢3(0) = 0, ¢}(0) = z for i = 1,2,3, and @1 (A\)(w1(N)* — p2(X)?) # 0
for all X in C. Since ¢1(\) # 0 for every A in C, and the mapping A — if—g‘\g
is an entire function which does not take the values 1 and —1, it follows from
Picard’s theorem [20, Theorem 16.22] that there exists a constant ¢ such that
w2(A) = cp1(A) for every A in C. Now, we have ¢ = ¢y (0) = ¢2(0) = 0, so
w2 =0, and so z2 = ¢4(0) = 0. In this way, the (closed) linear hull of the set

{z € A: z satisfies (P})}

is not the whole algebra A.

According to the above example, the refinement of LePage’s argument
made in this paper (by considering Property (P,) instead of (P})) becomes
crucial when we want to remove associativeness in the classical results.

Now that we have discussed about the proof of Theorem 2.1, let us do the
same in relation to Theorem 3.2. We begin by noting that the key idea in
the proof of the last quoted theorem is nothing but a simplified version of the
following claim.
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CLAIM 5.6. Let A be a complete normed complex algebra with a right
unit e, let ® be a right e-admissible product on A such that the inequality

lz ©yll < kllzyll

holds for some positive constant k and all z,y in A, and let z be in A satisfying
(P.) (respectively (P})) relative to the product ®. Then z satisfies (P,)
(respectively (P})) relative to the canonical product of A.

Proof. Chose a couple (€, p), where 2 is the complement in C of a count-
able compact set satisfying 0 € 0, and ¢ : Q — A is an analytic mapping such
that ¢(0) = e, ¢'(0) = z, and the operator RS(A) is bijective for every A in €.
Then, for every z in A and every A in €2, we have

lall < IS 0)) MRS (@) < KI(RE) 1 Ry @)

Therefore, for every A in €2, the operator R,y is bounded below. Now con-
sider the set

Q"= {X € Q: Ry is bijective},
and assume that Q' # Q. Then, since (' is non empty (indeed, R is the
identity mapping on A) and 2 is connected, there must exist some \g in the
boundary of Q' relative to 2. For such a ), R,(5y) lies in the boundary of

the set of all invertible elements of BL(A), and hence, by [1, Lemma 56.3 and
Theorem 57.4], it is not bounded below. This is a contradiction. 1

The claim just proved, together with the previous discussion about the
proof of Theorem 2.1, leads to the next result.

PROPOSITION 5.7. Problem 5.2 has an affirmative answer whenever the
product © is right alternative.

Given a complex algebra A and a complex number A, the A-mutation of A
is defined as the algebra consisting of the vector space of A and the product

(z,y) = Azy + (1 — Nyz.

Note that, if the algebra A has a unit e, then e remains a unit in any mutation
of A.

COROLLARY 5.8. Problem 5.1 has an affirmative answer if A has a right
alternative mutation (for instance, if A" is associative).
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Proof. By assumption, there exists A in C such that the product ® on A
defined by z ® y := A\zy + (1 — A)yz is right alternative. If A = 1, then the
result follows from Proposition 5.4. Otherwise, since for z,y in A we have

[z Oyl < ([ A]+k[1—=X ]yl
the result follows from Proposition 5.7. |

A complex algebra is said to be split quasiassociative if it is a mutation of
a complex associative algebra.

COROLLARY 5.9. Problem 5.1 has an affirmative answer whenever A is
split quasiassociative.

Proof. Choose an associative product ® on A and X in C satisfying
zy=Axoy+(1-ANyox

for all z,y in A. If A = %, then A is obviously commutative. Otherwise,
putting g := A\(2X\ — 1)}, we have

T Oy =pry+ (1 —pyx

for all z,y in A. Therefore A has an associative mutation, and Corollary 5.8
applies. 1

Remark 5.10. A prime complex algebra A is said to be centrally closed
if, for every non zero ideal M of A and for every linear mapping f : M — A
satisfying f(az) = af(z) and f(za) = f(z)a for all z in M and a in A, there
exists A in C such that f(z) = Az for all x in M. According to the main
result in [22], if A is a centrally closed prime nondegenerate non-commutative
Jordan complex algebra, then at least one of the following assertions hold:

1. A is commutative.

2. A is quadratic.

3. AT is associative.

4. A is split quasiassociative.
Now, it follows from Corollaries 3.3, 5.8, and 5.9 that Problem 5.1 has an affir-
mative answer if A is a centrally closed prime non degenerate non-commutative

Jordan algebra. We note that complete normed primitive non-commutative
Jordan complex algebras are prime, nondegenerate, and centrally closed [19].
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With the above remark, the discussion of the proof of Theorem 3.2 is
concluded.

Now, let us point out that the original LePage’s technique can be easily
adapted to provide further interesting developments in the non-associative
setting. A first sample of this procedure is shown in the following proposition.
Recall that an algebra A is called power-associative if every one-generated sub-
algebra of A is associative. Non-commutative Jordan algebras are examples
of power-associative algebras [21, p. 141].

PRrROPOSITION 5.11. Let A be a complete normed power-associative com-
plex algebra with a unit. Then A is associative if (and only if) there exists
k > 0 satistying ||z(yz)|| < k||(zy)z| for all z,y,z in A.

Proof. For A in C and z,y, z in A, we have

[l exp(Az)[(exp(=Az)y)z]|| < kl[[exp(Az)(exp(—Az)y)]]|
< kllexp(Az)(exp(=Az)y)|lll=]| < k*[[yll]|=]l.

Therefore the analytic mapping
A — exp(Az)[(exp(—Ax)y)z] = yz + Nz(yz) — (zy)z] + ...
from C to A is bounded, and hence constant. It follows z(yz) — (zy)z = 0. |

Other non-associative applications of LePage’s technique follow from the
next general result.

PROPOSITION 5.12. Let A be a complete normed non-commutative Jor-
dan complex algebra with a unit e, and P : A — BL(A) a quadratic mapping
such that P, = 1 (the identity mapping on A) and || P;(y)|| < k||Ux(y)|| for
some k >0 and all z,y in A. Then P = U.

Proof. For A in C and z in A, exp(Az) is an invertible element of A, and
hence Ueyp(rz) 18 a bijective operator [10, Theorem 13, p. 52], so that, by the

assumed inequality, we have || Poyxp(aa) OUe;llo( ) || < k. Let 2 be in A. Then the

mapping A — Peyp(az) © Ue;i)()\m) from C to BL(A) is analytic and bounded,
and hence the equality

Pexp()\:r) = Uexp()\m)
holds for every A in C (since P, = 1). Now, computing first and second
derivatives at A = 0, and combining the two resulting equalities, we find
P, =U;. 1
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Recall that an algebra A is called alternative if the identities 2%y = z(zy)
and yz? = (yz)z hold for all z,y in A. Actually, in an alternative algebra, all
two-generated subalgebras are associative [21, p. 29]. By taking in Proposition
5.12 P,(y) := zyz, Py(y) := 2y, and Py(y) := 2z(zy) — 2%y, and applying
well-known identities in non-commutative Jordan and alternative algebras, we
find Assertions 1, 2, and 3, respectively, in the corollary which follows.

COROLLARY 5.13. Let A be a complete normed non-commutative Jordan
complex algebra with a unit. Then we have:

1. A is alternative if (and only if) there exists k > 0 satisfying
zyz|| < Kkl|Uz(y)|

for all x,y in A.

2. A is associative and commutative if (and only if) there exists k > 0
satisfying || z%y|| < k|U.(y)|| for all z,y in A.

3. A is commutative if (and only if) there exists k > 0 satisfying
122 (yz) — 2yl < Kl|Ux(y)|
for all x,y in A.

We conclude this section with an easy observation providing a non-unital
LePage’s type result for some normed alternative algebras. Let A be a real or
complex alternative algebra. For x in A, the operator U, has a very simple
form, namely we have U,(y) = zyx for every y in A. Moreover A is non-
degenerate (i.e., Uy = 0 implies z = 0) if (and only if) it is semiprime (i.e., if
M is an ideal of A, and if M? = 0, then M = 0) [24, Theorem 9.2.5]. Now,
assume that the alternative algebra A is normed. Then the condition

(#) ml|z||* < ||Uy|| for some positive constant m and every z in A

becomes a natural analytic strengthening of semiprimeness. It is easily shown
that the above condition is equivalent to the fact that every normed ultrapower
of A is semiprime. Therefore we say that the normed alternative algebra A is
ultra-semiprime whenever A satisfies (#).

Remark 5.14. Let A be an ultra-semiprime normed alternative complex
algebra such that there exists k > 0 satisfying ||yz|| < k||zy|| for all z,y in A.
Then A is commutative.
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Proof. For z,y in A we have
10zl = [lzyzl < Kllz?yll < kll2*[[yll,

and hence ||U;| < k||z2||. Now let m > 0 be such that m|z||*> < ||U,|| for
every x in A. Then, again for every z in A, the inequality m|z||? < k|z?||
holds. By [17, Proposition 31], A is commutative (note that the assumption
in [17] that A has a unit is unnecessary). |

Looking at the proof of Remark 4.1 we see that, if A is a C*-algebra,
then for every z in A we have |U,|| = ||z||?, and therefore C*-algebras are
ultra-semiprime. The same is true in the more general case of the so-called
alternative C*-algebras, for which the reader is referred to [3] and [15]. Since
alternative C*-algebras are non-commutative .JB*-algebras [15, Proposition
1.3], Remark 5.14 provides us with a very easy proof of Corollary 4.5 in the
particular case that A is an alternative C*-algebra.

6. A REFINEMENT OF LEPAGE’S ASSOCIATIVE THEOREM

This concluding section is devoted to Banach algebras (i.e., complete nor-
med associative algebras). Our approach begins with the next proposition.

PROPOSITION 6.1. Let A be a complex Banach algebra, E a complex Ba-
nach space, and h : A x A — E a bilinear mapping satisfying

18z, )l < K=yl

for some positive constant k and all x,y in A. Then, for all x,y,z in A, we
have h(zy, z) = h(z,yz).

Proof. Let z,y,z be in A. For X in C, we can consider exp(Ay) and
exp(—Ay) as elements of the unital hull of A, so that z exp(Ay) and exp(—Ay)z
lie in A. Therefore we have ||h(zexp(\y),exp(—Ay)z)| < k||zz|. The Liou-
ville theorem leads to h(x exp(\y), exp(—Ay)z) = h(z, z), and hence h(zy, z) —
h(z,yz) = 0 (by computing derivatives at A =0). 1

Taking in Proposition 6.1 F = A and h(z,y) = yz, we obtain:
COROLLARY 6.2. Let A be a complex Banach algebra satisfying
lyz|| < Ellzy

for some positive constant k and all z,y in A. Then A? is contained in the
centre C(A) of A.



140 M. BENSLIMANE, L. MESMOUDI, A. RODRIGUEZ PALACIOS

Let A be as in the above corollary. It follows that, if A% is dense in A,
then A is commutative. Another not so clear consequence is provided by the
next corollary. The annihilator Ann(A) of an algebra A is defined as the set
of those elements x in A satisfying tA = Az = 0.

COROLLARY 6.3. Let A be a complex Banach algebra satisfying
lyz|| < Ellzy|

for some positive constant k and all z,y in A. If Ann(A) = 0, then A is
commutative.

Proof. By Corollary 6.2, it is enough to show that the conditions A? C
C(A) and Ann(A) = 0 imply that A is commutative. But, applying the first
condition, for z,y, z,t in A we have

0= [zyz, 1] = zy[z, 1] + [y, t]z = zy[2, ]
(here [.,.] stands for the commutator on A). Therefore
[A, A]A% = A[A, A]JA = A%[A, A] = 0,

and hence [A, A]A and A[A, A] are contained in Ann(A). Now, applying twice
the second condition, it follows [4, A] = 0. §

After Corollary 6.3, we realize that Remark 5.14 is not an interesting fact
when applies in particular to associative algebras. However, the general as-
sertion made in that observation for alternative algebras is independent of
the above corollary. This is so because, as the next example shows, Corol-
lary 6.3 does not remain true if the associativeness of A is relaxed to the
alternativeness.

EXAMPLE 6.4. Let A be the complex algebra whose vector space is C7
and whose product is defined by

(xla Z2,X3,T4,T5,L6, $7)(y1a Y2,Y3,Y4,Y5, Y6, y7) =
(0,0,0,21y2 — Z2y1,21Y3 — T3Y1, T2Y3 — T3Y2,
ZT1Ye — TeY1 + T5Y2 — Tays + T3Ys — T4y3)-
Then A is alternative and the equality Ann(A) = 0 holds. Moreover, for

every algebra norm ||.|| on A and all z,y in A we have ||zy|| = ||yz| (since A
is anticommutative).
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The algebra in the above example also shows that in Corollary 6.2 the
associativeness of A cannot be relaxed to the alternativeness. Indeed, in the
alternative anticommutative algebra A of the example we have

(0,0,1,0,0,0,0)((1,0,0,0,0,0,0)(0,1,0,0,0,0,0)) = (0,0,0,0,0,0,1),

and therefore elements of A% need not commute with all elements of A. This
remark is far from being anecdotist because every counterexample to the al-
ternative generalisation of Corollary 6.3 must be also a counterexample to the
alternative generalisation of Corollary 6.2. This follows from the fact (not too
easy to show) that, if A is an alternative algebra over a field of characteristic
different from 2 and 3, if Ann(A) = 0, and if every element in A% commutes
with all elements of A, then A is commutative.
Let £ denote the class of complex Banach algebras A satisfying

lyz|l < kllzyll

for some positive constant k£ and all 2,y in A. If a complex Banach algebra A
is the direct sum of a closed commutative ideal and a closed anticommutative
ideal, then certainly A is a member of £. However, as the following example
shows, there are members of £ of a more complicated nature.

ExAMPLE 6.5. Consider the associative complex algebra A whose vector
space is C° and whose product is defined by

(z1, 72,23, 74, 25) (Y1, Y2, Y3, Y4, ¥5) = (23 — ¥223,0,0,0, 12y4 + y274).

Then A (endowed with any algebra norm) is a member of £. Moreover, it is
easily seen that A cannot be expressed as a direct sum of a commutative ideal
and an anticommutative ideal.

The next example shows that the necessary condition A2 C C(A) for A to
be a member of £, provided by Corollary 6.2, is far from being sufficient.

EXAMPLE 6.6. Given X in C, consider the associative complex algebra A
whose vector space is C* and whose product is defined by

(71,2, 23) (Y1, Y2, y3) = (0,0, 21y2 + Az2y1).

Since A3 = 0, certainly the inclusion A2 C C(A) holds. Assume that for some
algebra norm ||.|| on A there is k£ > 0 satisfying ||yz| < k||zy| whenever z,y
are in A. Then, for all complex numbers z1, z2, Y1, y2 we have

| y1z2 + Moy [< k| 21y2 + Az | .
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Taking 1 = 29 = 3 = 1 and y» = —\, we obtain 1 — A2 = 0, and hence
A= FI1.

We conclude the paper by noting that some results in Section 5 can be
reformulated in terms of Banach algebras. Indeed, Corollary 5.9 ensures that,
if A is a complex Banach algebra with a unit, and if there exist A € C\{3}
and k > 0 satisfying || Ayz + (1 — Nzy|| < E||Azy + (1 — N)yz]| for all z,y in
A, then A is commutative. Also, as a consequence of Corollary 5.8 we obtain
that, if A is a commutative complex Banach algebra with a unit e, and if
@ is a continuous anticommutative product on A satisfying x ® e = 0 and
ley — x @ y|| < kllzy + x © y|| for some k£ > 0 and all z,y in A, then the
product ® is identically zero.
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