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A basic question in General Relativity from the point of view of the general
field theory is to obtain the Einstein equations coupled with the stress-energy-
momentum tensor of a dissipative fluid from a variational principle. We believe
that this problem, whose solution for perfect fluids is well known, has not been
faced in a systematic way, maybe by the thought of a possible nonsense, for
the concept of “dissipation” is believed to be incompatible with the essentially
“conservative” character of the calculus of variations. In this talk, we shall
deal with this topic by discussing a variational problem that generalizes in a
natural way to this kind of fluids the Einstein-Taub formalism for the perfect
fluids. We shall start by summarizing this formalism looking ahead to this
generalization. Next, we shall show the generalization restricting ourselves,
for simplicity, to relativistic fluids with just “bulk viscosity”. Finally, we shall
see some simple examples that illustrate very well the essential points of the
theory that has just been displayed.

1. PERFECT RELATIVISTIC FLUIDS

1.1. EULERIAN THEORY This is essentially a field theory over the space-
time that can be described as follows:

Let X4 be an oriented 4-dimensional manifold (space-time), M — X, be
the bundle of Lorentz metrics over X, (gravitational fields), and & — X, be
the trivial bundle X; x R".

Let us consider the subbundle:

p: EC M xx, T(X4) xx, £ — Xu,
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where E = {(gz, Dy, ez) : gz(Dy, D) < 0}.

Ifo = (g,D,e) € I'(X4, E), we shall interpret the section o as a fluid in the
gravitational field g, with density of mass p = \/—¢g(D, D), field of velocities
V = D/p and specific energy e.

The basic datum to be considered in this theory is a 1-form S on F, p-
horizontal and invariant under the natural lifting of the pseudogroup Diff X4
of local diffeomorphisms of X,. It shall be called entropy 1-form. If o €
I'(Xy4, E), the restriction 1-form S|, is understood as the entropy flux of the
fluid defined by the section o.

Let C3ig x, (F) be the ring of the Diff Xj-invariant differentiable func-
tions on E. If p and e are the functions on E assigning to each point
¢ = (92, Dy, e;) € E the real numbers p({) = \/—¢gz(Dy, D) and e(¢) = e,
respectively, it is easy to see that C3ig v, (E) = C*(p, e). On the other hand,
if w is the 1-form on F assigning to each point { = (g5, Dy, e;) € E the 1-form
we € TF(E) given by w: (¢ € T((E) = wp, (pc(c) where wp, = ip, gy, it is
also easy to see that S = Sw where S € Ciig v, (E). That is, giving the en-
tropy 1-form § is equivalent to giving the Diff X -invariant function S. The
functions p, v = 1/p, e and S are called density of mass, volume, energy and
specific entropy, respectively.

On the ring CRig x,(E), that shall be called ring of state functions, a
thermodynamic structure can be introduced by giving two 1-forms wg and
ww (1-forms of heat and work) defined as follows:

PROPOSITION. (GIBBS’ EQUATION) There exist unique functions T and p
in Cig x, (E) such that:
TdS = de + pdv. (1.1)

The functions T' and p are called temperature and pressure respectively,
being wg = T'dS and wy = pdv the 1-forms of heat and work that we wanted
to define.

From here, the following basic concept can be introduced:

DEFINITION. The stress-energy-momentum tensor is the correspondence
that assigns to each section o = (g, D, e) € I'(X4, E) the tensor on Xy:

T%(0) = peeVy @ Vo +po (Vo @ Vo + g7 1), (1.2)

where V, = D/p, and p, is the restriction to o of the pressure function
p € Ciig x, (£).
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Finally, the field equations for the theory described here, are the following
ones:
divy D =0, Eins(g) = Ty (o), ocel(Xy, E). (1.3)

The first one is the continuity equation, meanwhile, the second one is the

Einstein equation coupled with a source field with stress-energy-momentum

tensor Ty(0) (= contraction of T?(0) with the metric g). It is a theory of

gravitation in the sense of Einstein, that, as it is well known, due to the identity

div, Eins(g) = 0, has to satisfy the compatibility condition divy T5(o) = 0.
For each fixed metric g, the equations:

divyD =0,  div,Ty(0) =0, o €I'(Xy,E), (1.4)

are interpreted as field equations of a perfect fluid (D, e) in the gravitational
field defined by g.

This is a system of first order partial differential equations (parameterized
by g) on (D, e), with equal number of equations as unknowns, whose solutions,
substituted in the right hand term of the Einstein equation, allow us to obtain
the equation on g that must be satisfied by the gravitational field.

Taking into account the decomposition of the 1-form div, T (s):

div, Ty(0) = (div, To(0))° + (divy To (o)) wy

into its component incident to V and the one proportional to wy = iy g, the
equation divy T5(o) = 0 is equivalent to the pair of equations:

(div, To(0))° = 0, (div, Ta(0))l = 0, (1.5)

that are called, equation of “balance of momentum” and equation of “balance
of energy” respectively.
Bearing in mind equation (1.2) and the continuity equation, we have:

div, To(0) = (De)wy + eDVwy + V(p)wy + dp + p(div, Vwy + pV Y wy,
and hence, taking into account Gibbs’ equation, we have:
(div, Ty (o))l = (divy Ta(0)) (V) = —De + p%Dp = — (de + pdv) (D)

= —(TdS)(D) = -TDS = —Tdiv, S,
(div, Ty(0))° = div, Ty (o) — div, To(o)lwy = V(p)wy + dp + (pe + p)V Y wy.



166 A. FERNANDEZ AND P.L. GARCIA

Thus, the equation of “balance of momentum” coincides with the well
known Euler equation of the perfect relativistic fluids:

V(p)V + gradp + (pe +p)VVV =0, (1.6)
whereas the equation of “balance of energy” for T # 0 takes the form :
divy S =0, (1.7)

that is the conservation law of the entropy flux for this kind of fluids.

1.2. LAGRANGIAN THEORY. The variational theory for the perfect re-
lativistic fluids is well known and has been widely treated in the last twenty-
five years, both as a variational problem with the constraint defined by the
“continuity equation”, as well as under a free formulation by means of an ad-
equate choice of potentials. A novel aspect of our presentation for this theory
is dealing with both descriptions from a common point of view that proves
to be very adequate for the generalization we are looking for. The starting
point is the following construction, introduced originally by J. Kijowski, B.
Pawlik and W. Tulczyjew in [5] in order to deal with this kind of fluids as a
free variational problem (see also [6]).

Let (X4, g) be an oriented Lorentz manifold with Lorentzian volume ele-
ment wy. The aforementioned construction is based on the observation that
the Hodge isomorphism D € X(X4) — w3 = ipw, establishes a one-one cor-
respondence between divergence-free vector fields and closed 3-forms, that, in
turn, can be (locally) reduced to the form ws = dfy A dfs A dfs, fi € C°(Xy).
Identifying the 3-tuples of functions (f1, fo, f3) with the maps f: Xy — R3
(which are identified to the sections of the trivial bundle ¢3 = X4 x R?) a
locally surjective map can be established from the space of sections I'(Xy, £3)
to the space of divergence-free vector fields in an obvious way.

Considering the fibered products Y = M xx, & xy, £ and Y = M xx,
T(X4) xx, €', the former observation suggests to establish the surjective
morphism ¢: J'(Y) — Y of bundles over X, given by: j'(g, f,2) = (9, Dy, %),
where D, is the unique tangent vector such that ip wy(z) = (f*v), (v=
standard volume 3-form on R?). If s = (¢, f,2) € I(X4,Y) and 5 = po jls =
(9, D, z), then the vector field D satisfies the continuity equation divy D = 0,
and conversely in a local way. In the following, we will constrain our consid-
erations to the dense open sets of the previous fiber bundles whose sections
satisfy the condition g(D, D) < 0. From this situation, the variational formu-
lation of the relativistic perfect fluids is defined as follows:
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a) As a free variational problem: Defined by a Lagrangian density R(g)wq +
©i Lw, on J?(Y) , where R(g) is the scalar curvature of the metric g, £ is a
Diff X -invariant function on J*(Y') of the form L(p, o) with 0 = V(z), and
@1: J2(Y) — JY(Y) is the 1-jet prolongation of the just introduced morphism
e: JUY) =Y.

b) As a constrained variational problem: Defined by a Lagrangian density
R(g)wy + Lwy on J'(Y), where the sections (g, D, z) have to satisfy the con-
straint condition divy D = 0, and where the notion of “stationariness” is taken
with respect to the constraint-preserving “variations”:

sig=g+tg, &D=D+t{{D,D']- (divyD’'+g '-¢)D}, 18)
1.8
Oz =z +t2,

being ¢', D', 2’, a metric, a vector field and a function (arbitrary ones) on X,
respectively.

If s = (g, f,2) € T(Xy,Y) and 3 = pojls = (g,D,2) € T(X4,Y), the
variations (1.8) of 5 are, actually, the image of the ordinary variations of s:
hg=g+tg, 0 f = f+tf', 0z =2z+1t2' (¢, f', 2/ a metric on X4, a map from
X4 to R? and a function on Xy, all of them arbitrary) by the differential along
s of the map ¢ o j': T'(Xy,Y) — I'(Xy,Y). Thus, both variational problems
are @-related in the sense that a section s € I'(X4,Y) is critical with respect
to the variational problem a) if and only if 5 = ¢ o j!s is critical with respect
to the variational problem b). Moreover, we shall see that this fact can be
extended to the rest of variational concepts and results associated to both
problems in a well posed way.

Let s = (g, f,2) € T'(X4,Y). By means of the identification s*V*(Y) =
S2(T(X4)) @ f*T*(R?) @ 2*T*(R), the Euler-Lagrange operator & of the Lag-
rangian density ¢7Ln, can be easily decomposed in the following form: £:
s = [Eam(s),Ea(s),Ea(s)]. Analogously, if 5 = (g, D, z) € T'(X4,Y), the
Euler-Lagrange operator & of the Lagrangian density Ln, (as a free vari-
ational problem) can be decomposed by means of the identification 3*V*(Y) =

SHT(X,))®T*(X4) @2 T*(R), in the form £: 5 [En(3), Er(xy(3), Eer (g)] .
If T?(s) is the stress-energy-momentum tensor of ¢}Ln, along the section s
[2], a following fundamental result holds:
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THEOREM 1. If s = (g, f,2) € I'(X4,Y) and 5 = o j's = (9,D,2) €

I'(X4,Y), then:

T2(s) = Em(s) = Em(5) = [inérixy ()] 97 (1.9)
[*Ees(s) = —indérx,)(3),  Ee(s) = &a(3), (1.10)
divy To(s) = —f*Eea(s) + 2" Eqi(s). (1.11)

The tensor TQ(E) = Eu(3) — [iDéT(X4)(§)} g~! is nothing else but the
stress-energy-momentum tensor of the Lagrangian density £n, on Y along the
section 3 as a constrained variational problem. So, formula (1.9) expresses the
fact that the stress-energy-momentum tensors associated to the Lagrangian
densities ¢*Lny and L, of the variational problems a) and b) are ¢-related.
Regarding the characterization of the critical sections of both problems, we
have:

THEOREM 2. s = (g, f,z) € I'(X4,Y) is a critical section of the variational
problem a) if and only if:

Einsg = T5(s), Ees(s) =0, Eei(s) = 0. (1.12)
5= (g9,D,z) € T(X4,Y) is a critical section of the variational problem b) if
and only if:

divyD =0, Einsg=T5(3), ipdépx,)(3) =0, &a(3)=0. (1.13)

So, by formula (1.10), the Euler-Lagrange equations of the variational prob-
lems a) and b) are also ¢-related.

On the other hand, according to formula (1.11), the last two equations
of (1.12) are equivalent to the equation divy75(s) = 0 which is, in turn, a
consequence of the equation Einsg = T5(s), and analogously for the group of
equations in (1.13).

Finally, for a fixed metric ¢ and with the obvious identifications, the fol-
lowing result holds:

THEOREM 3. A section s = (g, f,z) (f and z variable) is critical for the
Lagrangian density ¢} Lng if and only if:

5&3 (S) = 0, 5&1 (S) =0. (114)
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A section’s = (g, D, z) (D and z variable) is critical for the Lagrangian density
Ln, with the constraint defined by the continuity equation divy D = 0 and
the constraint preserving “variations”: §;D = D + t{[D,D’'] — (div, D")D},
0z = z+1t2' (D', 2" arbitrary vector field and function on X, ) if and only if :

divyD =0,  ipdépx)(5)=0,  &a(3)=0. (1.15)

Again, by formula (1.11), the equations (1.14) of the first case are equival-
ent to the equation:
div, Ty(s) =0, (1.16)

meanwhile the equations for the second one are equivalent to the pair of
equations:
divy D =0, div, T (35) = 0. (1.17)

Ezplicit computations: Bearing in mind the expression L(p,o)v/— det g dzq A
dzy ANdx3 Adxy , 0 =V (z), of the Lagrangian density Ln,, we have:

_ 5 1 d(L(p,0)/—det g)
& = E Eidrj = E . dx;
T(X4)(S) - jOTj /At detg ay] Lj

AL(p,0) . 10L(p,0)

:_va+p e (owy +dz),

. L. 0 0 1 9(L(p,0))y/—detg 0 0
:E: ij 9 9 _

Em() i<j5 dz; Oz Z; —detyg 09ij Oz O

_ <_p3(£(p,0)) L 5 L(p.0))

—1
p %0 >V®V+£(p,0)g :

and then:

TQ(E) =Em(3) - [iDéT(XL;)(E)} g !
_ <_p3(ﬁ(ﬂa o)), 9(L(p,o))

o 7T o6

)V@V

+ <£(p, o) — pW) g~
- (et + o2 )y o
+ <£(p, o) — p%’i)’a))) VeV+gl
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Writing down L(p, o) = —p[l + €(p, 0)] as usual, we have:

72(5) =peVRV+p(VeV+g ), (1.18)
where
e=1+e(p,o)— Uaegpo’_a), p = p*de(p,0)p. (1.19)

On the other hand, the last two equations of (1.15) can be expressed,
respectively, as follows:

V(p)wy + dp + (pe +p)VVwy = 0, D <%) =0. (1.20)

The first one of them reproduces the Euler equation for perfect fluids taking
as “energy” and “pressure” the functions defined by formulas (1.19), and the
second one will be shown to express the conservation law of the entropy flux
for such fluids.

1.3. RELATION BETWEEN BOTH THEORIES: HYDRODYNAMICAL LEGENDRE’S
TRANSFORMATION. (GENERALIZATION. The relation between the Eulerian
and Lagrangian theories that we have just described can be now established
from the following basic concept:

DEFINITION. The hydrodynamical Legendre’s transformation is the map
Leg: J'(Y) — E of bundles over Xy:

Legljz(9: D,2)] = (92, Das€a),  jz(g,D,2) € J'(Y), (1.21)
where e, is the value at z of the energy function e defined by formula (1.19).

If Sw,, p and T are the functions on J'(Y) defined by —‘%gpa’a), p? 3659pp,0’)
and o respectively, we have the following;:

PROPOSITION. (GIBBS’ EQUATION) Sgy,, p and T are functions on J'(Y)
satisfying the equation:

TdSrw, = de + pdv.
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Hence, taking as specific entropy Sc.,, the stress-energy-momentum tensor

T° of the Lagrangian theory can be obtained from the stress-energy-momentum
tensor T? of the Eulerian theory by the formula:

T°(3) = T?(Leg 0 j'5), 3€T(X4,Y), (1.22)
thus leading to the following result that establishes the precise relation between
both theories:

THEOREM 4. 5 = (9,D,z) € I'(X4,Y) is a critical section of the vari-
ational problem b) of Lagrangian density R(g)w, + Lw, if and only if the
section o0 = Leg o j'5 € I'(Xy, E) satisfies the field equations (1.3) of the Eu-
lerian theory defined by the entropy 1-form § = Spy,, w. Fixing a metric g,
s = (g,D,z) (D and z variable) is a critical section of the constrained vari-
ational problem of Lagrangian density Lw, if and only if o = Legoj's satisfies
the equations (1.4) of the corresponding fluid.

Remark. By composing the map ¢;: J?(Y) — JY(Y) with the Legendre’s
transformation, this can be extended to the bundle J?(Y), and then, the
relation between the Eulerian theory and the variational problem a) with
Lagrangian density R(g)wy + ¢} Lw, can be established in the same terms as
in the preceding Theorem.

The variational theory displayed here can be generalized, with no changes
in its setting and results (Theorems 1, 2 and 3) to arbitrary Lagrangian
densities Lw, on J"(Y). Such generalization can be established comparing
the formulas of variation of the Lagrangian densities R(g)w, + ¢5 Lw, and
R(g)wy + Lw, of the variational problems a) and b), taking into account the
new concept of stress-energy-momentum tensor of a higher order natural vari-
ational problem introduced in [2]. In particular, this allows us to characterize
perfect fluids in this more general framework by the following conditions:

i) The stress-energy-momentum-tensor associated to the Lagrangian density
Lwg should be as follows:

T2(5) =peV @V +p(VeV+g ), 5=(9,D,2) cT(X),Y). (1.23)

Being Lw, of r order, the functions e and p depend on the section 5 up to
the 27 — 1 order, and then define functions e, p € C*(J?"~1Y’). Using the first
of them, e= energy, the Legendre’s transformation is defined as:

Leg: j2 (9. D, 2) € J* 1Y) = (¢u, Da, €5) € E. (1.24)
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The second condition for being a perfect fluid is then:
ii) The function p=pressure is Leg-projectable

With these conditions de + pdv defines a 1-form on Cgig v, (E) = C*(e,v)
that can be expressed (locally) in the form T'dS. S is the specific entropy and
T the temperature.

Or, alternatively, the following stronger global condition can be imposed:
iii) There exist functions S, T € C*°(E) such that

TdS = de + pdv. (1.25)

This characterization of perfect fluids allows, as we shall see in the ex-
amples, a wide margin in the election of Lagrangians in order to formulate
the theory variationally. All the formulations so obtained lead, through their
corresponding Legendre’s transformations, to the same Eulerian theory. But
what must be remarked here is that if no condition is imposed on the Lag-
rangian density Lwg, a more general Legendre’s transformation can be asso-
ciated to the resulting variational problem by means of which the theory of
dissipative relativistic fluids can be obtained, in a new sense we are going to
deal with in the following.

2. TI-DISSIPATIVE RELATIVISTIC FLUIDS

In its most recent version, dissipative relativistic hydrodynamics was for-
mulated for the first time in 1976 by W. Israel. Since then its interest, the-
oretical as well as applied, is great as the existing abundant literature on
this topic (see, p.e. [1, 3, 4, 7] and references therein) proves. Of special
interest for our purposes is the formalism proposed by D. Pavén, D. Jou and
J. Casas-Vazquez in [7], which, in its simpler expression (fluids with just bulk
viscosity), can be summarized as follows:

A TI-dissipative relativistic fluid is defined giving a horizontal and Diff X4-
invariant 1-form S on the bundle:

p:ECMXX4T(X4) ><X4§1 ><X4§1—>X4,

where E = {(g93, Dy, e3,113) : 92(Dg, Dy) < 0}.

The sections o = (g, D, e, II) € T'(X4, E) are interpreted as a fluid in
the gravitational field g, with mass density p = /—g(D, D), velocity field
V = D/p, specific energy e and bulk viscosity II. S is the entropy 1-form
and its restriction S|, represents the entropy flux of the fluid given by the
section o.
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In this case, the ring CRig x, (E) of the state functions is identified with
C®(p,e, 1) (being II: & = (g, Dy, €2,11;) = I, € R), and § = Sw where
S € CRig x, (E) represents the specific entropy.

PROPOSITION. (GIBBS’ EQUATION) There exist unique functions T, p and
fu in C3ig x, (E) such that:

TdS = de + pdv + frdIl. (2.1)

The functions T' and p are called temperature and pressure, and the dif-
ferential forms wg = T'dS and ww = pdv + frdll, heat and work 1-forms,
respectively.

DEFINITION. The stress-energy-momentum tensor is the map that assigns
to each section o = (g, D, e, 1) € I'(X4, E) the tensor over Xy:

T(0) = peeV @V + (o + (VO V + g7 1), (2.2)
where p, is the restriction to o of the pressure function.

The field equations for this theory, as well as the equations of the fluid for
a fixed metric g, keep on being (1.3) and (1.4),respectively, just replacing 72
by (2.2) at them.

The essential difference with regard to the case of perfect fluids is that
the equations (1.4) of the fluid are a system of 5 scalar equations in the 6
components of o = (D, e, II), still allowing the possibility to impose another
scalar condition (phenomenological equation) in order to lay down the system.

Bearing in mind (2.2) and the continuity equation, we get:

divy T5(0) =(De)wy + eDVwy + V(p + Mwy + d(p + M)+

. g (2.3)
+ (p+I)(divV)wy + (p+ )V Y wy,
therefore, considering also Gibbs’ equation, we have:
: I = (di Dp
(divy Ty(0))" = (div, T(0))(V) = —=De + (p + 1) — =
5 P (2.4)
— —TDS+TI=£ + fyDIL
P
Hence, the equation of balance of energy can be stated as follows:
I1
divgS = =—=Dp + f—HDH. (2.5)

Tp? T
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The additional condition we have previously mentioned is now chosen in
such a way that the fundamental thermodynamic inequality is satisfied:

div, S > 0. (2.6)

The two options more frequently adopted in the literature are the following;:

Eckart-Landau’s Theory: It is established for specific entropies of kind of
the perfect fluids: S(p,e). Then div, S = —%@, being © =divV = —%. In
this case, the simplest condition assuring (2.6) is taking Il = —&(p, T')©, where
&(p,T) is a positive function called bulk viscosity coefficient. By replacing this
new condition in the equation of balance of momentum, we obtain the well
known relativistic Navier-Stokes equation. In particular, for £(p,T) = 0, the
phenomenological equation is II = 0, hence following the theory for perfect
fluids.

Causal Theory: In this theory, specific entropies of the form S(p,e,II) =
So(p,e) + a(p, e)HT2 are considered. It follows therefore divyS = —20 +
Ta(p,e)IIDII. And, following the same simplicity criterion as before, the
phenomenological equation I = —£(p, €)[© — T?a(p, e) DII] is adopted.

The Eulerian Theory just stated can be now obtained defined from the
variational principle given at the end of §1.3 proceeding as follows:

The stress-energy-momentum tensor associated to the Lagrangian density
Lw, over J"(Y) admits a canonical decomposition as follows:

T°(3) =peV @V + P(VRV + g )+

(2.7)
+qV4+V®q+nm, 5=(g9,D,2) eT'(Xy,Y),

where ¢ is a vector field such that g(V,q) = 0 and 7 a symmetric 2-contra-
variant tensor such that i, 7 = 0 and whose associated endomorphism by g
has null trace.

Choosing Lagrangian densities whose stress-energy-momentum tensors have
the form:

T’(5) = peV @V +P(VeV+gl), 5=(9,D,2) €T(X,,Y), (28)

we may introduce a new notion of Legendre’s transformation proceeding as
follows:

Let p(p,e,I1) € C°(E) be the pressure function of the Eulerian theory
with entropy function § = Sw.

Let us suppose that the equation P = p(p,e,II) 4+ II in the unknown
II € C*®°(J?"~1Y), where P and e are the functions on J*~1(Y) defined by
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the tensor, has a single solution. This is an essential hypothesis and raises a
previous question that must be answered in each particular case (for example,
in Eckart-Landau’s theory, where p = p(p,e), the solution is trivial: II =
P —p(p,e)). In these conditions we can give the following:

DEFINITION. We shall call Legendre’s transformation the vector bundle
morphism Leg: J*~}(Y) — FE over Xy:

Leg: J Y(Y) — E (2.9)
329, D,2) = [gz, Daye(57 (g, D, 2)), 11(55" (g, D, 2))] '
where e,IT € C*°(J?"~1(Y)) are the already introduced energy and bulk vis-

cosity functions.

As constructed, the stress-energy-momentum tensor T associated to the
Lagrangian density Lw, is obtained from the stress-energy-momentum tensor
T? of the Eulerian theory using the formula:

T°(5) = T2(Leg 0 /7 ~'5), 5€T(X4,Y),

therefore, in analogy with the case of perfect fluids (Theorem 4), we have:

THEOREM 4’. The section 3 = (g, D, 2) € T'(Xy,Y) is a critical section of
the constrained variational problem with Lagrangian density R(g)wg + Lw,
if and only if the section 0 = Leg o j" 15 € T'(X4, E) satisfies both field
equations (1.3) of the Eulerian theory with entropy 1-form § = Sw. For a
fixed metric g, § = (g9, D,z) (D and z variable) is a critical section of the
constrained variational problem with Lagrangian density Lw, if and only if
o = Leg o j'3 satisfies the equations (1.4) of the corresponding fluid.

This variational characterization is used for the sections o = (g, D, e, II)
(X4, E) such that: 0 = Lego j2 !5, where 5 = (g,D,2) € T'(X4,Y).
If we could eliminate z from the pair of equations e = e(j2" (g, D, 2)),
I = TI(5%" (g, D, 2)) that define the Legendre’s transformation, a differential
invariant ® € Cig X4(JkE) would be obtained (for k£ great enough), whose
annihilation along the sections j¥o would characterize the previous condition
o = Lego 2" ~13. In other words, the system of Eulerian equations of the fluid
obtained from this variational principle would be:

divy(D) =0,  div,T%(0) =0,  @(*0) =0. (2.10)
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Hence, that principle would have its own associated phenomenological
equation, ®(j¥0) = 0, which could not now be imposed following any other
criterion.

The inequality divy S > 0 should then be directly imposed, restricting the
whole theory to the “locus” of J*E where the differential invariant defined by
the expression of div, S has positive values.

3. EXAMPLES

3.1. The Lagrangian L(p,0) = —p[l + €(p,0)], 0 = Vz, chosen in §1.2
to describe perfect fluids is an example of 0-order differential invariant in g
and D, with order 1 in z. As we have already seen, this choice implies for
the specific entropy S and temperature T to be —W and o, respectively.
To illustrate the characterization given in §1.3 for the perfect fluids, we are
going to show in this example which 0-order differential invariants in g and D
of order 1 in 2z can be taken as Lagrangians for this kind of fluids.

First of all, it is easy to see that the most general expression of these
invariants is £(p, z,0,0), where 0 = Vz and § = g~'(dz,dz). In order that
the condition i) of our characterization holds, it is easy to see that £ must be
independent from 6. Giving L(p, z,0) = —p[l + €(p, z,0)], its stress-energy-
momentum tensor is:

T°(@) = peV @V +PVRV+g '), s5=(g9D,z2) cl(Xs,Y),
where:

Oelp.70)  p_ p0clpz,0) (3.1)

e=1+¢e(p,z,0)—0 ra— op

The distribution tangent to the fibers of Leg: J'(Y) — E, the Legendre’s
transformation, is generated by the vector field:

0%\ 0 Oe 0%e 0
X = Z -\ =z — 0 — 3.2
<0302> 52+ <82 08082) 9o’ (32)
hence, the condition ii), Leg-projectability of the function P, can be expressed
infinitesimally as X P = 0, implying the following condition for the function

e(p, 2,0):

2 2 2 2
86( 0% 86) 868620 (3.3)

9pdo \" 9002 9z) " 9pdz 802
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In particular, as one would expect, this condition is fulfilled by the func-
tions €(p, o) that define the Langrangians chosen in §1.3.

The calculation of the specific entropy, S, and of the temperature, T', must
be done for each case once the particular solution of (3.3) one wants to study
has been chosen.

As an illustration of this, let us consider the Lagrangian

L=—p[l+ep,20),

where:
2

ag
6(,0,2,’,0’) = iexpp—i-zexp(—p), (34)

which, clearly, verifies the condition (3.3).
In this case we have:

o? o?
e=1-— 5 exPp + zexp(—p), P = p? <7 expp — zexp(—p)) . (3.5)

Thus, P = p%(1 —e).
The integration of the second member, de+(e—1)dp, of the Gibbs’ equation
leads to the following expressions for the specific entropy and temperature:

S=(e—1)expp, T =exp(—p). (3.6)

3.2. Let us consider, as a second example, the Lagrangian density Lwg on
JYY), where:
L=Ly+ F(p,0,0), (3.7
and Lo = —p[l +€(p,0)], 0 =V (z) and © = —pD(p).
This is a “perturbation” for the perfect fluid with Lagrangian density Low,

defined by the term F(p, o, ©). Its stress-energy-momentum tensor has again
the form:

T'(5)=peV@V+P(VeV+g ), 5=(g9D,2 eT(Xs,Y), (3.8)

being now:

Jo 00

OF _OF OF
P= F—p——0——p’D | —
po+F=ps =958 (a@>’

1 F F
e:eo—i—;(—F—i-aa——i-@a—),
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where ey and Py are the specific energy and pressure of the perfect fluid with

Lagrangian density Low,, specific entropy Sy = —2929) anq temperature
grang Y LoWg, SP Py ©0 90 p

T() = 0.

In particular, if the additional condition e = e is imposed, F'(p, o, ©) must
be a homogeneous function of degree 1 in the variables ¢ and ©.

Let us be a bit more concrete. We are interested in considering this case as
Lagrangian model for a Il-dissipative relativistic fluid, taking the same specific
entropy S = Sy as the initial system’s one.

Gibbs’ equation (2.1) leads to T'= Ty = 0 and P = po, and thus to the

following expression for bulk viscosity:

B B OF _OF  , [(OF
“—P‘pO—F‘Pa—p‘@%‘pD<%> 510)
_Ua_F_ 8_F_ 2D 8_F ‘
~ %90 Pap 90 )"

Formula (3.10), being expressed as it is in terms of the Eulerian variables,
is already the phenomenological equation associated to this problem.
For example, if F(p, z,0) = —£X(p)©?, then it holds:

M= —WW — 2p3%D(T)® + 2p3¥D(®). (3.11)

3.3. Let us follow with the previous example, but now taking the following
function as specific entropy:
H2
S(,O, ¢, H) = Sﬂ(pa e) + a(pa 6)7
Making use of Gibbs’ equation for the perfect fluid TpdSy = de — %dp, we
obtain:

Ty o 1P0~ pPT I 5o Tolla
—de— L~ ’
1+ TpI2% pr 1+ Tyl %2 1+ TpI2%

which is Gibbs’ equation for the specific entropy S with pressure and temper-
ature given by:
T T(] Do — ,02T0 g_%H2
= da2’ p= p)
1+ TygeI12 1+ Togo 112
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Thus, the fenomenological equation is:

po — p*To G112

N=P-p=P—
P 1+ Todem?
where
OF OF oF Oe
P = F—p——-0-——p’D|(=— =p’—, Ty=

that, in general, is a equation of third degree on II.
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