Matched Pairs and Extensions of Lie Bialgebras

MILoud BENAYED

Université des Sciences et Technologies de Lille, UFR de Mathématiques-URA au CNRS D751, 59655 Villeneuve d’Ascq Cedex, France; e-mail: benayed@agt.univ-lille1.fr

(Research paper presented by Antonio M. Cegarra)

AMS Subject Class. (1991): 16W30, 17B56

Received February 27, 1998

1. Introduction

A Lie bialgebra is a Lie algebra also equipped with a Lie coalgebra compatible structure ([2], [3]). A Lie bialgebra morphism is a Lie algebra morphism which is also a Lie coalgebra morphism. Let \mathfrak{g} and A be finite dimensional Lie bialgebras over $\mathbb{K} = \mathbb{R}$ or \mathbb{C}. A Lie bialgebra $\widehat{\mathfrak{g}}$ is called an extension of \mathfrak{g} by A if there exists an exact sequence $0 \to A \xrightarrow{i} \widehat{\mathfrak{g}} \xrightarrow{\pi} \mathfrak{g} \to 0$ where i and π are Lie bialgebra morphisms. Two extensions $\widehat{\mathfrak{g}}_1$ and $\widehat{\mathfrak{g}}_2$ of \mathfrak{g} by A are called equivalent if there exists a Lie bialgebra morphism $\rho : \widehat{\mathfrak{g}}_1 \to \widehat{\mathfrak{g}}_2$ such that the following diagram commutes:

![Diagram](https://via.placeholder.com/150)

We denote by $\text{Ext}_{\text{big}}(\mathfrak{g}, A)$ the set of all inequivalent Lie bialgebra extensions of \mathfrak{g} by A.

For an arbitrary commutative Lie bialgebra A and a general Lie bialgebra \mathfrak{g} an explicit description of $\text{Ext}_{\text{big}}(\mathfrak{g}, A)$ can be found in ([1]). If $A \neq \mathbb{K}$ then the set $\text{Ext}_{\text{big}}(\mathfrak{g}, A)$ is not in general a group: it is described by a non-abelian cohomology of Lie bialgebras.

In this work we suppose that \mathfrak{g} is a co-commutative Lie bialgebra to avoid non-abelian cohomology. The set $\text{Ext}_{\text{big}}(\mathfrak{g}, A)$ naturally admits an abelian group structure and it is isomorphic to the second cohomology group of a
differential complex constructed out of g and A. More precisely, the data of an element of $\text{Ext}_{\text{big}}(g, A)$ induces a matched structure on the pair (g, A). For such a fixed structure we give an explicit description of $\text{Ext}_{\text{big}}(g, A)$ and define a cohomology of the matched pair (g, A) such that its second group is isomorphic to $\text{Ext}_{\text{big}}(g, A)$.

For a particular matched structure on (g, g^*) we realize the double $D = g \bowtie g^*$ of g as the co-central trivial extension of g by g^*.

In the entire sequel (g, A) denote an abelian pair of Lie bialgebras i.e. g is a co-commutative Lie bialgebra and A is a commutative Lie bialgebra. All vector spaces over $K = \mathbb{R}$ or \mathbb{C} considered here are finite dimensional.

2. DESCRIPTION OF $\text{Ext}_{\text{big}}(g, A)$ FOR A FIXED MATCHED PAIR

Let $(E): 0 \to A \xrightarrow{i} \widehat{g} \xrightarrow{r} g \to 0$ be an extension of Lie bialgebras. By definition we obtain the following two Lie algebra extensions:

$$(E_1): 0 \to A \xrightarrow{i} \widehat{g} \xrightarrow{r} g \to 0,$$

$$(E_2): 0 \to g^* \xrightarrow{r^*} \widehat{g}^* \xrightarrow{i^*} A^* \to 0,$$

where g^* (resp. A^*) is the dual Lie algebra of g (resp. A) and i^* (resp. π^*) denotes the transpose of i (resp. π).

Extension (E_1) induces a (left) g-module structure $\varphi: g \to \text{End}(A)$ and similarly extension (E_2) determines an A^*-module structure $F: A^* \to \text{End}(g^*)$ on g^*. Using the fact that \widehat{g} is a Lie bialgebra we obtain the following compatibilities between φ and F (see ([1])): $\forall \alpha, \beta \in A^*, \forall x, y \in g$,

$$F(\alpha)^*(\{x, y\}) = [F(\alpha)^*(x), y] + [x, F(\alpha)^*(y)]$$

$$+ F(\alpha \circ \varphi(x))^*(y) - F(\alpha \circ \varphi(y))^*(x), \quad (2.1)$$

$$[\alpha, \beta] \circ \varphi(x) = [\alpha \circ \varphi(x), \beta] + [\alpha, \beta \circ \varphi(x)]$$

$$+ \beta \circ \varphi(F(\alpha)^*x) - \alpha \circ \varphi(F(\alpha)^*y). \quad (2.2)$$

DEFINITION. ([3]) A matched pair structure on (g, A) is the data of a g-module structure φ on A and an A^*-module structure F on g^* satisfying the identities (2.1) and (2.2).

If $(E)'$ is a Lie bialgebra extension equivalent to the given extension (E), then the induced Lie algebra extensions $(E_1)'$ and $(E_2)'$ are equivalent to (E_1) and (E_2) respectively. As a consequence, extension $(E)'$ induces the same matched structure $(\varphi, F)'$ on (g, A). Therefore, we can conclude the following:
PROPOSITION. The data of an equivalence class of Lie bialgebra extensions induces a matched pair structure on the pair \((g, A)\).

Let \((\varphi, F)\) be a fixed (but arbitrary) matched pair structure on \((g, A)\). Our aim is to describe the set \(\text{Ext}_{\text{bli}}(g, A)\) of Lie bialgebra inequivalent extensions of \(g\) by \(A\) inducing the given matched structure on the pair \((g, A)\).

Let \(0 \to A \xrightarrow{i} \widehat{g} \xrightarrow{\pi} g \to 0\) be an extension of \(g\) by \(A\). By choosing a linear section \(s\) of \(\pi\) we identify the vector spaces \(\widehat{g}\) and \(g \times A\); \((x, a) \equiv s(x) + i(a)\), where \(x \in g\) and \(a \in A\). The Lie bracket on \(\widehat{g} = g \times A\) is given by: \(\forall x, y \in g, \forall a, b \in A\),

\[
([x, a], (y, b)) = ([x, y], \varphi(x)(b) - \varphi(y)(a) + \gamma(x, y)),
\]

where \(\gamma : g \times g \to A\), \(\gamma(x, y) = [s(x), s(y)] - s([x, y])\), is a 2-cocycle, \(\gamma \in Z^2_{\text{alg}}(g, A)\), of the Lie algebra \(g\) with values in the \(g\)-module \(A\). The fact that \(i\) and \(\pi\) are Lie bialgebra morphisms implies that the Lie bracket on \(\widehat{g}^* \cong g^* \times A^*\) is necessarily of the following form: \(\forall \xi, \eta \in g^*, \forall \alpha, \beta \in A^*\),

\[
([\xi, \alpha], (\eta, \beta)) = (F(\alpha)(\eta) - F(\beta)(\xi)) + \Omega(\alpha, \beta), [\alpha, \beta]),
\]

where \(\Omega : A^* \times A^* \to g^*\) is a 2-cocycle, \(\Omega \in Z^2_{\text{alg}}(A^*, g^*)\), of the Lie algebra \(A^*\) with values in the \(A^*\)-module \(g^*\). The compatibility between these two brackets on the Lie bialgebra \(\widehat{g}\) implies the following condition \((1)\): \(\forall \alpha, \beta \in A^*, \forall x, y \in g\),

\[
\langle \Omega(\alpha, \beta), [x, y] \rangle + \langle \gamma(x, y), [\alpha, \beta] \rangle =
\]

\[
(F(\alpha)(\beta \circ \gamma(x)) - F(\beta)(\alpha \circ \gamma(x)) + \Omega(\alpha, \beta \circ \varphi(x)) - \Omega(\beta, \alpha \circ \varphi(x)), y)
\]

\[
- (F(\alpha)(\beta \circ \gamma(y)) - F(\beta)(\alpha \circ \gamma(y)) + \Omega(\alpha, \beta \circ \varphi(y)) - \Omega(\beta, \alpha \circ \varphi(y)), x)
\]

\(\gamma : g \to L(g, A)\) is given by \(\langle \gamma(x), y \rangle = \gamma(x, y)\), where \(L(g, A)\) is the vector space of linear maps of \(g\) in \(A\).

DEFINITION. We say that \(\gamma \in Z^2_{\text{alg}}(g, A)\) and \(\Omega \in Z^2_{\text{alg}}(A^*, g^*)\) are compatible if the identity \((2.5)\) is satisfied. We denote by \(Z^2_{\text{alg}}(g, A) \times Z^2_{\text{alg}}(A^*, g^*)\) the subspace of \(Z^2_{\text{alg}}(g, A) \times Z^2_{\text{alg}}(A^*, g^*)\) consisting of all compatible cocycles.

So we have established that to any extension \(\widehat{g}\) of \(g\) by \(A\) we can associate an element \((\gamma, \Omega)\) of \(Z^2_{\text{alg}}(g, A) \times Z^2_{\text{alg}}(A^*, g^*)\). Conversely, the data of such a pair gives an extension \(g \times A\) of \(g\) by \(A\) defined by the formulae \((2.3)\) and \((2.4)\).
A change of the chosen section \(s \) to another section \(s' = s + i \circ \theta \) of \(\pi \) with \(\theta \in L(g, A) \) transforms the pair \((\gamma, \Omega)\) to \((\gamma + \delta \theta, \Omega - \partial \theta^*)\). Here \(\delta \theta \) denotes the coboundary operator of the 1-cochain \(\theta : g \rightarrow A \) of the Lie algebra \(g \) with values in the \(g \)-module \(A \) and \(\partial \theta^* \) is the coboundary of the 1-cochain \(\theta^* : A^* \rightarrow g^* \) of the Lie algebra \(A^* \) with values in the \(A^* \)-module \(g^* \).

The map \((g \times A, s) \rightarrow (g \times A, s'), (x, a) \rightarrow (x, a + \theta(x))\) between trivializations of \(g \) defined by \(s \) and \(s' \) respectively is an equivalence of extensions. An isomorphism \(\rho \) defining an extension equivalence between \(g_1 \) and \(g_2 \) of \(g \) by \(A \) trivialized by \((g \times A, \gamma, \Omega)\) and \((g \times A, \gamma', \Omega')\) respectively is always of the above form. We deduce that \(g_1 \) and \(g_2 \) are equivalent if and only if there exists \(\theta \in L(g, A) \) such that \(\gamma' = \gamma + \delta \theta \) and \(\Omega' = \Omega - \partial \theta^* \).

So we have established the following result:

Theorem. There is a bijective correspondence between \(\text{Ext}_{\text{big}}(g, A) \) and the quotient \(B(g, A) \) of \(Z^2_{\text{sig}}(g, A) \times Z^2_{\text{sig}}(A^*, g^*) \) by \(\{ (\delta \varphi, - \partial \varphi^*) \mid \varphi \in L(g, A) \} \).

The set \(B(g, A) \) is an abelian group for the natural addition:

\[
((\gamma, \Omega)) + ((\gamma', \Omega')) = ((\gamma + \gamma', \Omega + \Omega'))
\]

where double parentheses denote equivalent classes in \(B(g, A) \).

3. \(B(g, A) \) IS A SECOND COHOMOLOGY GROUP

Let \((\varphi, F)\) be a fixed matched pair structure on \((g, A)\). The \(g \)-module structure \(\varphi \) on \(A \) naturally induces a \(g \)-module structure, which we also denote by \(\varphi \), on \(\wedge^q A \) for every integer \(q \geq 2 \):

\[
\varphi(x)(a_1 \wedge a_2 \wedge \ldots \wedge a_q) = \sum_{k=1}^{q} a_1 \wedge a_2 \wedge \ldots \wedge a_{k-1} \wedge \varphi(x)(a_k) \wedge a_{k+1} \wedge \ldots \wedge a_q.
\]

Similarly, \(\wedge^p g^* \) is endowed via \(F \) with \(A^* \)-module structure for every integer \(p \geq 2 \). We denote by \(\partial \) (resp. \(\delta \)) the coboundary operator of the Lie algebra \(A^* \) (resp. \(g \)) with values in the \(A^* \) (resp. \(g \)) module \(\wedge^q A \) (resp. \(\wedge^q g^* \)). An element \(\omega \) of \(\wedge^p g^* \otimes \wedge^q A \) is a \(p \)-cochain of the Lie algebra \(g \) with values in the \(g \)-module \(\wedge^q A \). This element \(\omega \) is also regarded (via its transpose) as a \(q \)-cochain of the Lie algebra \(A^* \) with values in the \(A^* \)-module \(\wedge^p g^* \). In this identification, the following result is an immediate fact by definition of \(\delta \) and \(\partial \).
Lemma.
\[Z^2_{alg}(g, A) \times_c Z^2_{alg}(A^*, g^*) = \{(\gamma, \Omega) \in Z^2_{alg}(g, A) \times Z^2_{alg}(A^*, g^*) \mid \delta \Omega + \partial \gamma = 0 \}. \]

As \((g, A)\) is a matched pair of Lie bialgebras we obtain the following differential double complex:

\begin{align*}
\delta & \downarrow & \delta & \downarrow \\
\partial & \rightarrow & \wedge^p g^* \otimes \wedge^q A & \rightarrow & \partial & \rightarrow & \wedge^p g^* \otimes \wedge^{q+1} A & \rightarrow & \partial & \rightarrow \\
\delta & \downarrow & \delta & \downarrow \\
\partial & \rightarrow & \wedge^{p+1} g^* \otimes \wedge^q A & \rightarrow & \partial & \rightarrow & \wedge^{p+1} g^* \otimes \wedge^{q+1} A & \rightarrow & \partial & \rightarrow \\
\delta & \downarrow & \delta & \downarrow \\
\end{align*}

A. Masuoka ([4]) obtained this double complex from a double complex constructed on universal enveloping algebras of \(g\) and \(A\) which also form a matched pair of Hopf algebras.

Let us denote by \((T, D)\) the total differential complex associated to our double complex: \(T^n = \bigoplus_{p, q \geq 1} \wedge^p g^* \otimes \wedge^q A\) and \(D|_{\wedge^p g^* \otimes \wedge^q A} = \delta + (-1)^p \partial\).

Definition. The cohomology \(H^\bullet(g, A)\) of a matched pair \((g, A)\) is the cohomology of the total complex \((T, D)\) restricted to the intersection of the kernels of all vertical and horizontal operators.

As a consequence of the preceding lemma and theorem, we conclude the following:

Theorem. Set \(\mathcal{B}(g, A)\) is the second cohomology group \(H^2_{big}(g, A)\) of the matched pair \((g, A)\).

This result is analogous to the work of W. M. Singer ([5]) on Hopf algebras. Let \(H_1\) be a commutative Hopf algebra and \(H_2\) a co-commutative Hopf algebra and let \(\text{Ext}(H_2, H_1)\) denote the set of all inequivalent Hopf algebra extensions of \(H_2\) by \(H_1\). An element of \(\text{Ext}(H_2, H_1)\) determines a matched structure on the pair \((H_2, H_1)\). For such a fixed structure on the pair \((H_2, H_1)\), the set \(\text{Ext}(H_2, H_1)\) is an abelian group isomorphic to the second cohomology group of a differential complex constructed out of the given matched pair \((H_2, H_1)\), similarly as for Lie bialgebras.
4. THE DOUBLE OF A CO-COMMUTATIVE LIE BIALGEBRA.

The double $\mathcal{D} = \mathfrak{h} \bowtie \mathfrak{h}^*$ of a Lie bialgebra \mathfrak{h} is the vector space $\mathcal{D} = \mathfrak{h} \oplus \mathfrak{h}^*$ endowed with the following Lie bracket and Lie co-bracket:

$$[[x, \xi], [y, \eta]]_{\mathfrak{h} \oplus \mathfrak{h}^*} = ([x, y]_{\mathfrak{h}}, \text{coad}_{\eta} x - \text{coad}_{\xi} y, [\xi, \eta]_{\mathfrak{h}^*} + \text{coad}_x \eta - \text{coad}_y \xi),$$

$$[[\xi, x], [\eta, y]]_{\mathfrak{h}^* \oplus \mathfrak{h}} = ([\xi, \eta]_{\mathfrak{h}^*}, -[x, y]_{\mathfrak{h}}).$$

In the following coad$_x x$ denotes the coadjoint action of $\eta \in \mathfrak{h}^*$ on $x \in \mathfrak{h}$ $\cong (\mathfrak{h}^*)^*$ (\mathfrak{h} is finite dimensional) and coad$_x \eta$ is the coadjoint action of $x \in \mathfrak{h}$ on $\eta \in \mathfrak{h}^*$. Endowed with the preceeding structures the double $\mathcal{D} = \mathfrak{h} \bowtie \mathfrak{h}^*$ is in fact a Lie bialgebra.

Let \mathfrak{g} be a co-commutative Lie bialgebra. The commutative (not co-commutative) Lie bialgebra $A = \mathfrak{g}^*$ is a \mathfrak{g}-module for the coadjoint action ($\theta = \text{coad}$) and \mathfrak{g}^* is considered as a trivial $A^* = \mathfrak{g}$-module i.e. $F = 0$. With these data the pair $(\mathfrak{g}, \mathfrak{g}^*)$ is a matched pair of Lie bialgebras; condition (2.1) is trivially verified and condition (2.2) is reduced to a Jacobi identity in \mathfrak{g}. The brackets (2.3) and (2.4) of an extension $\mathfrak{g} \oplus \mathfrak{g}^*$ of \mathfrak{g} by \mathfrak{g}^* described by the zero class $((0, 0)) \in \text{H}_\text{cyc}^2 (\mathfrak{g}, \mathfrak{g}^*)$ are given by:

$$[[x, \xi], [y, \eta]]_{\mathfrak{g} \oplus \mathfrak{g}^*} = ([x, y], \text{coad}_{\eta} (\xi - \varphi(y)) - \text{coad}_{\xi} (\eta - \varphi(x)) + \varphi([x, y])),$$

$$[[\xi, x], [\eta, y]]_{\mathfrak{g}^* \oplus \mathfrak{g}} = (-\varphi([x, y]), [x, y]),$$

where φ is an element of $L(\mathfrak{g}, \mathfrak{g}^*)$. If $\varphi = 0$ then we obtain the double $\mathfrak{g} \bowtie \mathfrak{g}^*$ with the opposite bracket on its dual $\mathfrak{g}^* \oplus \mathfrak{g}$.

A co-central extension $\widehat{\mathfrak{g}}$ of \mathfrak{g} by A is an extension of \mathfrak{g} by A such that the dual extension $\widehat{\mathfrak{g}}^*$ is a central extension of A^* by \mathfrak{g}^*. This holds since here $F = 0$.

Prosposition. The double $\mathfrak{g} \bowtie \mathfrak{g}^*$ of a co-commutative Lie bialgebra is the trivial co-central extension of \mathfrak{g} by the \mathfrak{g}-module \mathfrak{g}^* for the coadjoint action, except for one sign.

Remark. The double $\mathfrak{h} \bowtie \mathfrak{h}^*$ of an arbitrary Lie bialgebra \mathfrak{h} is not an extension of \mathfrak{h} by \mathfrak{h}^*; the natural projection $\mathfrak{h} \bowtie \mathfrak{h}^* \rightarrow \mathfrak{h}$ is not a Lie algebra morphism.
LIE BIALGEBRAS

REFERENCES
