Arbitrary Exponential Decay of Energy for a Class of Bilinear Control Problems

M. Aassila

IRMA, 7 rue René Descartes, 67084 Strasbourg, France. e-mail: aassila@math.u-strasbg.fr

(Research paper presented by W. Okrasiński)

AMS Subject Class. (1991): 93D15

Received January 8, 1997

1. Statement of results

This work considers the question of feedback stabilizability for the bilinear system

$$\begin{cases} u'(t) = Au(t) + v(t)Bu(t), \\ u(0) = u_0. \end{cases}$$
 (P1)

Here A is the infinitesimal generator of a linear C_0 -semigroup of contractions e^{At} on a real Hilbert space H with inner product (\cdot, \cdot) , so that A is dissipative, i.e. $(A\Psi, \Psi) \leq 0$ for all $\Psi \in D(A)$. B is a (possibly nonlinear) operator from H into H and v(t) is a real valued control.

The mains novelty of this paper is the statement that there exists a feedback control v(u) which gives a uniform decay rate of the solution to the closed-loop problem (P1) with an arbitrarily decay rate.

Let ω be an arbitrarily large positive number, and choose

$$v(t) = rac{-\omega \|u\|^2}{(Bu,u)} - (Bu,u) \quad ext{in} \quad ext{(P1)},$$

then (P1) may be written in the first order form

$$\begin{cases} u' = Au + F(u), \\ u(0) = u_0, \end{cases}$$

274

where

$$F(u) = \left(\frac{-\omega \|u\|^2}{(Bu, u)} - (Bu, u)\right) Bu.$$

Under the hypotheses

- (H1) A is the infinitesimal generator of a linear C_0 -semigroup of contractions e^{At} on a real Hilbert space H;
- (H2) there exists a positive constant α such that $(B\Psi, \Psi) \geq \alpha \|\Psi\|^2$ for all $\Psi \in D(B)$, B(0) = 0 and $B: H \to H$ is locally Lipschitz,

it can be shown that problem

$$\begin{cases} u' = Au + \left(\frac{-\omega ||u||^2}{(Bu, u)} - (Bu, u)\right) Bu, \\ u(0) = u_0, \end{cases}$$
 (P2)

has a unique weak solution u(t) on \mathbb{R}_+ . Let us note that the existence of such control follows from a theorem of Ball [1].

MAIN RESULT. Fix an arbitrarily large positive number ω , and let u(t) denotes the unique weak global solution of (P2), then we have

$$||u(t)|| \le ||u_0||e^{-\omega t}$$
 for all $t \ge 0$.

Proof. We have

$$\begin{split} \frac{1}{2} \frac{d}{dt} \big(e^{2\omega t} \|u(t)\|^2 \big) &= e^{2\omega t} \big(\omega \|u(t)\|^2 + (Au, u) + (F(u), u) \big) \\ &\leq e^{2\omega t} \big(\omega \|u(t)\|^2 - \omega \|u(t)\|^2 - (Bu, u)^2 \big) \leq 0. \end{split}$$

2. Application

Let Ω be a bounded, open, connected set in \mathbb{R}^n $(n \geq 1)$ having a boundary Γ of class C^2 . Let $\nu_1, \nu_2, \ldots, \nu_m$ be m real numbers strictly positive, and $f_i: \mathbb{R}^m \to \mathbb{R}$, m functions of class C^1 in \mathbb{R}^m .

Let us consider the following system

$$\begin{cases} \frac{\partial u_i}{\partial t} = \nu_i \Delta u_i + v f_i(u_1, \dots, u_m) & \text{in } \Omega \times \mathbb{R}_+, \quad i = 1, 2, \dots, m, \\ u_i = 0 & \text{on } \Gamma \times \mathbb{R}_+, \quad i = 1, 2, \dots, m, \\ u(x, 0) = u_0(x). \end{cases}$$
(P3)

If we set

$$U=(u_1,\,u_2,\,\ldots\,,\,u_m);$$
 $F(u_1,\,u_2,\,\ldots\,,\,u_m)=(f_1(u_1,\,\ldots\,,\,u_m),\,\ldots\,,\,f_m(u_1,\,\ldots\,,\,u_m));$ $H=(L^2(\Omega))^m$ and $F(U):=BU$ for all $U\in H,$

then (P3) may be written in the form

$$\begin{cases} U' = AU + F(U), \\ U(0) = U_0. \end{cases}$$

Assume that

- (i) $f_i(0, 0, \ldots, 0) = 0, \quad i = 1, 2, \ldots, m;$
- (ii) there exists $\alpha > 0$ such that $f_i(u_1, u_2, \ldots, u_m) \geq \alpha u_i$;
- (iii) there exists M > 0 such that

$$\left|\frac{\partial f_i}{\partial u_i}(u_1, u_2, \ldots, u_m)\right| \leq M \quad \text{for all} \quad (u_1, \ldots, u_m) \in B_S(0),$$

where $B_S(0)$ denotes the ball of center 0 and radius S,

then (H1)-(H2) are satisfied.

Putting

$$v = \frac{-\omega \sum_{i=1}^{m} \int_{\Omega} u_{i}^{2} dx}{\sum_{i=1}^{m} \int_{\Omega} u_{i} f_{i}(u_{1}, u_{2}, \dots, u_{m}) dx} - \sum_{i=1}^{m} \int_{\Omega} u_{i} f_{i}(u_{1}, u_{2}, \dots, u_{m}) dx,$$

then the solution of (P3) satisfies

$$||u(t)||_H \le ||u_0||_H e^{-\omega t}$$
 for all $t \ge 0$.

A special case of (P3) is when $f_i(u_1, u_2, \ldots, u_m) = u_i$. Then, the feedback $v = -\omega - \sum_{i=1}^m \int_{\Omega} u_i^2 dx$ gives an arbitrarily exponential decay rate.

ACKNOWLEDGEMENTS

The author thanks the referee for carefully reading the previous version of the manuscript and for his comments which resulted in this revised version of the paper.

REFERENCES

[1] Ball, J.M. On the asymptotic behavior of generalized processes with applications to nonlinear evolution equations, J. Differential Equations, 27 (1978), 224-265.