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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let © be a bounded connected open domain in R with smooth boundary
I". We consider the wave equation ‘

(1.1) y'(t,z) = Ay(t,z) + u(t)g(z), (¢,z) € (0,T] x R,
(1.2) y(0,z) = yo(z), ¥'(0,z) =wyi(z); =z €Q,
(1.3) y(t,z) =0, (t,z)€ (0,T] xT,

where ' stands for 2, g € L*(2). g represents the spatial weighting function
relative to the control function u. The control u is demanded to be expressed
in feedback form acting only on the velocity vector

(1.4) u(t) = F(y'(t,-))-

Our study will focus on the closed loop feedback system (1.1)-(1.3), (1.4).
Qualitatively, this means that under minimal assumptions on g we seek an
appropriate feedback operator F so that all the corresponding solutions decay
to zero as t — oo in the strongest possible norm. On the other hand, the
system above is consistent with the fact that practical considerations of feasi-
bility and implementation demand that only finitely many controllers should
act upon the system. Some results can be deduced from earlier papers where
different techniques are used: controllability of an auxiliary system in [7],
LaSalle’s principle in [8], multiplier methods in [1]. In order to present the
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closest result to ours, we introduce the self-adjoint positive operator A defined
by

(1.5) D(A) = H*(Q)NHy(Q), Ay=—Ay.

Let {1}, be the orthonormal basis (in L*(Q2)) of eigenfunctions of A, with
{A:}2, as corresponding eigenvalues. From [1] we quote the following result:

THEOREM 1.1. Assume that the initial conditions satisfy y, € H}(Q),
y1 € L*(Q) and consider the feedback

(16) u(t) = - [ g@)y'(t,2) do,

then the solution of the feedback sytem (1.1)-(1.3), (1.6) satisfies
Jim (M @ + 1y (8 Mz = 0

if, and only if

(1.7) /Q g(@)i(z) dz £0 Vi

Our main result is essentially an improvement of Theorem 1.1 above:

THEOREM 1.2. Assume that the initial conditions satisfy y, € H*(2) N
H;(2), y, € Hy () and consider the feedback

(18) ut) = [ g@)Ay'(t,3) da,
q I\
then the solution of the closed loop system (1.1)-(1.3), (1.8) satisfies

Jim (118 ) za@) + Iy () @) =0
if and only if (1.7) holds.

As mentioned above, Theorem 1.2 improves a stabilization result stated in [1].
The approach adopted by the authors in [1] is based on the background of
unbounded sectorial sesquilinear forms developed in [3]. In the present paper,
the stabilization occurs via an unbounded feedback and for stronger norms.
The proof given below is similar in some steps to that of [1], [4]. However,
the main difference between the present paper and these references is that the
background mentioned above is dispensed with and does not seem appropriate
in our closed loop system.



STABILIZATION OF THE WAVE EQUATION 419

2. PROOF OF THEOREM 1.2

2.1. PRELIMINAIRES AND WELL POSEDNESS. Recall that for @ > 0,
D(A*) can be topologized by the scalar product

(Zl,zz)D(Aa) = Z/\?a(/gzl’l/’i dx)(/ﬂzz'z/q de)-

i

In particular we have D(A7) = H}(Q) (equivalent norms). For other identifi-

cations between D(A®) and Sobolev spaces we refer to [2], [6]. More generally,

for a given Hilbert space Z, the corresponding scalar product and norm will

be denoted respectively by (, )z and || ||z. Throughout this paper, C' will

denote a generic constant and any dependence on a parameter, say o, will be

mentioned by C,. For ¢ > 0 fixed, y(t) will denote the function z — y(¢, z).
With control u(t) in the feedback form (1.8) we are led to consider

y" + Ay + (9, AY') 12(0)g = 0,
(2.1)
y(0) =yo € D(A), ¢'(0) =y, € D(A?).

Let us introduce the following variational problem which will be used below

(2.2) (v", Av) 2 () + (Ay, Av)12(q)
+ (9, AY" ) 20 (9, Av)2(0) =0, Vv € D(A).
Then by Galerkin method we can show
PROPOSITION 2.1. The equation (2.1) has a unique solution such that
y € C(0,T;D(A)), ' €C(0,T,D(A?)).

Furthermore, the mapping S; : (yo,y1) — (y(t),y'(t)) defines a strongly con-
tinuous semigroup of contraction over D(A) x D(A?).

Proof (sketch). The proof is based on techniques that are the same as the
ones used in [5], [6]. To show the existence we can use the Galerkin method
with the set of eigenfunctions of A as a basis. Let us choose Yom,y1m €
span(¢;, - -+ ,4,,) such that

N

(2.3) Yom — Yo in D(A),  y1m — 1 in D(AZ).
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Let us define y,,(t) as a solution of
(Y (t), Xithi) 2 () + (Aym (), Mithi) L2(e)

(24) + (Ay:n(t)ag)Lz(Q) (g, Ai"/)i)LZ(Q) = 07 1 < { < m,
ym(t) € SP&H(¢1, e ad)m)a ym(o) = Yom, y:n(O) = Yim-

Then for y,,(t) = Y1, him(t)1;, we multiply (2.4) by A, to obtain by sum-
mation in ¢:

1d ,, , )

@25) o (@I 4, + lym O ) + (9, Ao ey = 0.
It follows that

(2.6) 4 DI, 3, + lym @) < C Y,

so that we can extract a subsequence (y,(t)) such that y,,, — v weakly
in L*(0,T;D(A)), y.,, — w weakly in L?(0,T; D(A?)) and it is easy to see
that w = v'. Furthermore, one can show that v is a solution for (2.1). The
remaining part of the proof is standard. I

Remark 2.1. The set of initial conditions (yg,y;) in (2.1) for which we have
(2.7) ly" (O, 8, + 1y Olbay < 00, V220,

is dense in D(A)x D(A?%). Indeed, if A, denotes the generator of the semigroup
defined in Proposition 2.1, then it is obvious that for (yo,y:1) € D(4,), (2.7)
holds.

2.2. STABILIZATION. For y(t) solution of (2.1) we introduce

1, 2
(2.8) B(y,1) = | 4y(0)l}a@ + [AT )],

Then it is easy to see that F(y,t) is nonincreasing in t. On the other hand, it
follows that our stabilization problem reduces to the equivalence

(2.9) tli}m E(y,t)=0 <= (1.7) holds.

Necessity. If condition(1.7) is violated for some eigenvalue A;, which is real
and nonzero, then y(t) = eoteh; (j = v/—1) is a solution of (2.1) such that
E(y,t) =2X2 > 0.

Sufficiency. The proof of sufficiency is based on the following lemma. Some
similar estimates have been established for hyperbolic problems in [1], [4].
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LEMMA 2.1. Assume that (1.7) holds, then for each € > 0, there is a
constant C. > 0 such that for every 3 > 0 we have

© -0t 2 *® —Bty, ! 2
(210) [T IOI ¢ < CBw.0 +e [Ty O, at

for every solution of (2.1) for which y(0) € D(A), y'(0) € D(A?).

COROLLARY 2.1. In addition to (1.7), assume that (yo,y1) € D(A,), then
@1) [ ePBtdt < CAEw,0) + B,0)
0
* -8t 1 2
e [P, dt

Remark 2.2. 1t is trivial to establish Lemma 2.1 and its corollary for G >
B:, B > 0 and fixed using the inequalities

v, 43, < CE(y,t) < CE(y,0).

The point is that (2.10) and (2.11) continue to hold for 0 < 8 < S..

Proof of sufficiency. Since D(A,) is dense in D(A) x D(A?) and E(y, T) is
continuous in y uniformly on T > 0, it is sufficient to consider (yo, y1) € D(A,).

d
On the other hand, since EE(@/, t) <0, tli)m E(y,t) exists and for each T > 0,

T
(1= MBE.T) <6 [ e TE(y,bdt
0
Thus, from (2.11), one has
Jim Bw.T) <6 [ P B(y,0)dt < FO.B(w,0) + Bly',0)] + B, 0).

Letting B tend to zero we obtain the left-hand side of (2.9).
Proof of Corollary 2.1. From Lemma 2.1,

(212) [ eI O, 3, dt < CBW, 0 +e [ ey O 4, d
0 AZ) (AZ)
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In addition,

o0 t 2
/0 e ly ()30 dt

° d 1 1 1d
=8t (11112, — S (A ARy, e
g/o e [lIy HD(A%) dt(A y, A Q)L @ — 2dt(g’ Ay)Lz(Q) dt

2

< [T O 5, + GO0 s, + 500 AVO) g

1
_5/ [ D(Az) §(gaAy)%2(n)] dt.
For 8 < 1, the right-hand side is bounded above by

01/0 o—Bt (”y/”i)(A%) 4 ”yuzD(A%)> dt + Cy (”y(O)HZD(A) + ”y ( )”D(A2))

<cC [E(y, 0) + /Ooo (Hy B asy + “i‘/”f)(m) dt] :

Inequality (2.11) follows from (2.12), the last inequality and Lemma 2.1.

- Proof of Lemma 2.1. Let ¢ € C*(R) satisfy ¢(t) = 0fort <0and ¢(t) =1
for t > T where T > 0 is fixed. Let w = ¢y, then using a similar variational
form to (2.2), it follows

(w", AU)U(Q) + (Aw, AU)L2(Q) + (A’w',g)m(n) (g, AU)L2(Q)
= (h, A’U)Lz(Q), V’U € D(A),
where
h=2¢'y' + ¢"y + ¢'(9, AY) L2 () 9-
h vanishes for t > T so that [° [|h(t)]|32qydt < CrE(y,0). The spaces L*(1),

D(Az), D(A) now refer to the complexifications of the original spaces. The
corresponding scalar products are extended in the standard way to the com-
plexifications. Let w be the complex parameter with Imw < 0 and let W
denote the Fourier transform of w

W(w) = / e “tw(t)dt, j=vV-1.
0
Then W satisfies the variational problem: W € D(A) and

(AW, AV) 2(q) — wz(W, AV) 1209 + jw(AW, ) 12(2) (9, AV ) 12(0)
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or, equivalently
(213) AW—wZW-i—jw(AVV,g)Lz(Q)g = H,
where H is the Fouriep transform of h. Then we have

LEMMA 2.2. For each complex w with Imw < 0 and each H € L*(Q2), the
equation (2.13) has a unique solution W such that

(2.14) IWllpay < CollH| 20

Once Lemma 2.2 is established, the proof of Lemma 2.1 can be completed
by an argument similar to that used in the proof of Lemma 2 of [4]. Write
w=a—j0, >0 and small. Then

1 [t . '
e Plw(tz) = 2—/ W (w, z)da,

T J-—c0
1 e

e Pt (t,z) = 2—/ e’ (jw)W (w, z)da.
T J-oo

By Parseval’s equality,

*° 1 2 1 +00 1 2
/ e 2Pt HAfw dt = ——/ ”A5W(w,z) da,
0 L2(Q) 21 J_ o L2(2)
oo X 2 1 +o00 2
/ e 2Pt HAfw' dt = ——/ ”wA%W(w,z)
0 L3 (Q) 21 J_ o L2 ()

Let v > 0 be so large that y=2 < . For |a| < v and |3| < 6(y) we obtain from
Lemma 2.2

Y +oo
(215) JIWIE gy da < Cy [ H gy da
. .

We also have

2

0%
W d </ —||W|? d
~/|a|>'7“ ”D(A%) “= lo| > 72” ”D(A%) “

+o0
2
(2.16) Se/mlwwmmﬁﬂa

oo
gm/(mwwla
0 D(A?)
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Adding (2.15) and (2.16) gives

DA}

oo +o0
27r/0 e‘zﬂtlelzD(A%)dthA,/_oo ||H||§2(Q)da+2m/0 |2,y

< 05/0 e—Zﬁt||h(t)||2L2(Q)dt+ 27r€/0 e wt”w'”i)m )dt

< CBly,0) +2me [ e[,y dt

for some constant C. depending on €. From the definition w = ¢y, we have

(o] T
—28t 2 2 —20t 2
LI 5yt < [T it [T e R,y de

< C.E(y,0) + / =28ty (1)[2, dt,

D(Az)

[eS] T oo
—20t 2 < 2 . —206t1|,,! 2
| e I O, 5 dt < c{/ (O 3 dt+ [ e ||y<t)||D(A%)dt}

<O B0+ [ e Iy @1,

This completes the proof of Lemma 2.1. [
Proof of Lemma 2.2. For a given complex parameter w = a + j08 with
B <0, let us consider the following operators from D(A) to L?(Q):

AV = AV = W’V + jw(AV, g) 1209,
B,V = AV =V,
P,V = jw(AV,9)r2(2)9-

Since P, is of finite dimensional range and B,-bounded, P, has B,-bound
zero [3, Problem 1.14, p. 196]. On the one hand, it is easy to see that the
compactness of the resolvent of B, implies that A, has also compact resolvent
[3, Theorem 3.17, p. 214]. On the other hand, since A, is bounded from
D(A) to L*(Q), the proof of the lemma reduces to see that A, is bijective.
By Fredholm alternative it suffices to show that A, is injective. Suppose that
A, W =0, then

(2.17) (AW, AV) 2y =0, ¥V € D(A).
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On the other hand, we have

Re(AW, AW ) 2@) =W llpay = W, 4, + IV, L4,
- B|(g, AW)L2(9)|2’

(AW, AW) 20) = =20B|WI2, 3+ |(g, AW) 2y .

If a = 0, it follows from Re(A,W, AW ) 2q) = 0 that W = 0. If o # 0, then
Im(A, W, AW)2(q) = 0 implies that |(g, AW)Lz(Q)[z —20||W||? = 0; thus
if 8 < 0, W = 0 once again, while if 8 = 0,

D(AY)

(2.18) (g, AW) 2y |° = 0.

Equation (2.17) then yields

(219) 2(AW, AV)L2(Q) — w2(I/V, AV)Lz(Q) =0, VVe D(A)

Taking into account the hypothesis (1.7), (2.18) and (2.19) can hold simulta-
neously only if W = 0. This completes the proof. |
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