ш

Quasilinear Elliptic Equations with Arbitrary Growth Nonlinearity and Data Measures

N. Alaa

Université Cadi Ayyad, Faculté des Sciences et Techniques, B.P. 618, Département de Mathématiques, Marrakech, MAROC

(Research paper presented by W. Okrasiński)

AMS Subject Class. (1991): 35J65, 35J25

Received April 25, 1996

1. Introduction

The purpose of this note is to study existence of weak solutions for the quasilinear elliptic problem with Dirichlet boundary conditions

$$(P_{\lambda})$$

$$\begin{cases} -u''(t) = j(t, u(t), u'(t)) + \lambda f & \text{in } (0, 1) \\ u(0) = u(1) = 0, \end{cases}$$

where $\lambda \in \mathbb{R}$, $j:(0,1)\times \mathbb{R}\times \mathbb{R} \to [0,+\infty[$ is measurable and continuous with respect to u and u', and f is a given finite nonnegative measure on]0,1[. When f is regular, it is proved in [6] that if (P_{λ}) has a nonnegative supersolution in $W_0^{1,\infty}$ then (P_{λ}) has a solution in $W_0^{1,\infty}\cap W^{2,p}$. Note that here the supersolution is required to vanish at the boundary. This provides an a priori pointwise estimate for u'(0) and u'(1). The boundedness on u' on the whole set]0,1[is then obtained by a maximum principle applied to the equation satisfied by $|u'|^2$. The convexity of $s\to j(t,r,s)$ is there an essential ingredient.

When f is irregular, one must work with "weak solutions" for which u' is not bounded. As a consequence the techniques usually used to prove existence and based on a priori L^{∞} —estimate on u and u' fail.

When j does not depend on u but has arbitrary growth with respect to u', existence of weak solution for this type of problems have been obtained in [1] provided we known the existence of a nonnegative weak supersolution in $W_{loc}^{1,\infty}$. When j depends on u' with subquadratic growth and arbitrary growth

406 N. ALAA

with respect to u. The same result has been obtained in [2] but in more space dimensions.

In the present paper we are particularly interested in situations where f is irregular and where the growth of j with respect to u and u' is arbitrary. Obviously the classical approach fails to provide existence and new techniques have to be used. We describe some of them here.

In Section 2 we give the precise setting of the problem and state the main result. We present in Section 3 an approximate equation for (P_{λ}) . We prove in Section 4, that the existence of weak supersolutions implies the existence of weak solutions.

2. Statement of the main result

Throughout this paper we suppose

- (2.1) f is a nonnegative finite measure on]0,1[and $j:[0,1]\times\mathbb{R}\times\mathbb{R}\to[0,+\infty[$ is such that
- (2.2) j is measurable, almost everywhere $t, (r, s) \rightarrow j(t, r, s)$ is continuous.
- (2.3) j is non decreasing in r and convex in s.
- (2.4) $\forall r, s \in \mathbb{R}, \ j(\cdot, r, s)$ is integrable on]0, 1[.
- $(2.5) \ j(t,r,0) = \min\{j(t,r,s), r \in \mathbb{R}\} = 0.$

We introduce now the notion of weak solution and weak supersolution of the problem (P_{λ}) used here.

DEFINITION 2.1. A function u is said to be a weak solution of the problem (P_{λ}) , if

(2.6)
$$\begin{cases} u \in W_{loc}^{1,\infty}(0,1) \cap C_0[0,1] \\ -u'' = j(\cdot, u, u') + \lambda f \text{ in } D'(0,1). \end{cases}$$

DEFINITION 2.2. A weak supersolution of the problem (P_{λ}) is a function w such that

(2.7)
$$\begin{cases} w \in W_{loc}^{1,\infty}(0,1) \cap C_0[0,1] \\ -w'' \ge j(\cdot, w, w') + \lambda f \text{ in } D'(0,1). \end{cases}$$

Remark 2.1. In (2.6) and (2.7) $u, w \in W_{loc}^{1,\infty}(0,1)$, using then (2.4) we have $j(\cdot, u, u') \in L_{loc}^1(0,1)$ (resp. $j(\cdot, w, w') \in L_{loc}^1(0,1)$). Hence every term in (2.6) and (2.7) makes sense.

This enables us to state the main result of this paper.

THEOREM 2.1. Assume that (2.1)-(2.5) hold. Assume that there exists a weak supersolution w of the problem

(2.8)
$$\begin{cases} u \in W_{loc}^{1,\infty}(0,1) \cap C_0[0,1] \\ -u'' = j(\cdot, u, u') + f \quad \text{in } D'(0,1). \end{cases}$$

Then there exists a weak solution u of (P_{λ}) for all $0 \leq \lambda \leq 1$, and

$$0 \le u \le w$$
 a.e. in [0,1].

Remark 2.2. 1) It should be noted that there is not growth restriction on the "lower order nonlinearity" of j as a function in u'. Hence the present theorem extends some results in [2].

- 2) It is possible to consider various extensions of problem (P_{λ}) , for exemple to other boundary conditions or to a problem with periodicity conditions.
- 3) For a given problem, on can try several methods to exhibit a supersolution. Of cours there is no methodology, but, usually, one should try functions which are locally "simple" (constants, linear, eigenfunctions of simple operators). The existence of such a supersolution is actually a very general fact, as proved in [3].

First we introduced regularized versions of (2.8) with smaller j_n with linear growth. One advantage of this approach is that the corresponding solutions u_n , are such that $u_n \in W_0^{1,\infty}$ and $0 \le u_n \le u_{n+1} \le w$.

3. An approximate equation

In this section, we define an "approximate" equation of (P_{λ}) . For $n \geq 1$, we consider the approximation $\hat{j}_n(t,r,\cdot)$ of $j(t,r,\cdot)$ defined by

(3.1)
$$\widehat{j_n}(t,r,s) := \begin{cases} j(t,r,-n) + j'_s(t,r,-n)(s+n) & \text{if } s \leq -n \\ j(t,r,s) & \text{if } |s| < n \\ j(t,r,n) + j'_s(t,r,n)(s-n) & \text{if } s \geq n, \end{cases}$$

where j'_s denotes a section of the sub differential of j with respect to s. Then we set

(3.2)
$$j_n(t,r,s) = \hat{j_n}(t,r,s)1_{[w < n]}$$

408 N. ALAA

where w is a supersolution of (P_{λ}) . Then j_n satisfies (2.2)-(2.5) and,

$$(3.3) j_n \le j 1_{[w < n]}, \quad j_n \le j_{n+1}.$$

According to the result in [1], there exists a sequence (u_n) of solutions of the problem

$$(P_{\lambda,n}) \qquad \begin{cases} u_{n+1} \in W_0^{1,\infty}(0,1) \\ \\ -u''_{n+1} = j_{n+1}(\cdot, u_n, u'_{n+1}) + \lambda f_{n+1} & \text{in } D'(0,1) \end{cases}$$

where $u_1 = \lambda G(f_1) \ge 0$ and $f_n = f1_{[w \le n]}$.

4. Estimates. Passing to the limit

We start this section with the following three lemmas, (see [1]).

LEMMA 4.1. Let $a(t) \in L^1_{loc}(0,1), v \in W^{1,1}_{loc}(0,1) \cap C_0[0,1]$ such that

(4.1)
$$\begin{cases} a(t)v'(t) \in L^1_{loc}(0,1) \\ -v'' - av' \ge 0 \quad \text{in } D'(0,1). \end{cases}$$

Then $v \ge 0$ in [0, 1].

LEMMA 4.2. Let $u \in W_0^{1,1}(0,1), v \in L^{\infty}(0,1)$ such that

$$(4.2) 0 \le u \le v in (0,1), 0 \le -u' in D'(0,1).$$

Then,

$$u \in W_{loc}^{1,\infty}(0,1) \cap W_0^{1,1}(0,1)$$

and

$$|u'(x)| \le \frac{1}{d(x;a,b)} \Big(c(a,b) + ||v||_{L^{\infty}(0,1)} \Big)$$

for all 0 < a < b < 1. Where $d(x; a, b) = \min(b - x, x - a)$ and c(a, b) is a constant.

Remark 4.1. Lemma 4.2 will provide $W_{loc}^{1,\infty}$ estimates for the approximate solution u_n . But this estimate do not allow us to pass to the limit in the nonlinear terms. We need the strong convergence of u_n in $W_{loc}^{1,\infty}(0,1)$. We obtain this result from the following lemma.

LEMMA 4.3. Let $(u_n) \subset W_0^{1,\infty}(0,1)$, such that

(4.4)
$$u_n$$
 converging strongly in $L^{\infty}(0,1)$ to u

(4.5) u'_n converging strongly in $L^1_{loc}(0,1)$ to u' and a.e. in]0,1[

$$(4.6) 0 \le u_n \le u, \quad -u_n'' \ge 0 \quad \text{in } D'(0,1).$$

Then

 u'_n converges to u' strongly in $L^{\infty}_{loc}(0,1)$.

Proof of Theorem 2.1. Let us prove by induction that

$$(4.7) 0 \le u_n \le \min(w, n) = w_n, \text{for all } n \ge 1.$$

First from $(P_{\lambda,n})$ we have for all $n \geq 1$

(4.8)
$$\begin{cases} u_{n+1} \in W_0^{1,\infty}(0,1) \\ -u''_{n+1} \ge 0 & \text{in } D'(0,1). \end{cases}$$

By Lemma 4.1 we see that

$$(4.9) u_{n+1} \ge 0 in [0,1].$$

We easily deduce from the definition of w that

$$(4.10) -w_n'' \ge j(\cdot, w_n, w_n') 1_{[w \le n]} + f 1_{[w \le n]} \quad \text{in} \quad D'(0, 1).$$

For n = 1, using (4.8), (4.10) we get

(4.11)
$$\begin{cases} w_1 - u_1 \in W_{loc}^{1,\infty}(0,1) \cap C_0[0,1] \\ -(w_1 - u_1)'' \ge 0 \quad \text{in } D'(0,1) \end{cases}$$

hence by Lemma 4.1 we have, $0 \le u_1 \le w_1$. Let us assume $0 \le u_n \le w_n$, then from (4.10), the monotonicity of j in r and (3.3), we have

$$\begin{cases} w_{n+1} \in W_{loc}^{1,\infty}(0,1) \cap C_0[0,1] \\ -w_{n+1}'' \ge j_{n+1}(\cdot, u_n, w_{n+1}') + f_{n+1} & \text{in } D'(0,1) \end{cases}$$

410 N. ALAA

hence w_{n+1} is a supersolution of the problem $(P_{\lambda,n})$. Since

$$-(w_{n+1}-u_{n+1})'' \ge j_{n+1}(\cdot, u_n, w'_{n+1}) - j_{n+1}(\cdot, u_n, u'_{n+1}) + (1-\lambda)f_{n+1} \quad \text{in } D'(0,1)$$
$$-(w_{n+1}-u_{n+1})'' \ge \partial j_{n+1}(\cdot, u_n, u'_{n+1})(w_{n+1}-u_{n+1})' \quad \text{in } D'(0,1)$$

then we have

(4.12)
$$\begin{cases} \theta_{n+1} \in W_{loc}^{1,\infty}(0,1) \cap C_0[0,1] \\ -\theta_{n+1}'' - a_n \theta_{n+1}' \ge 0 \quad \text{in } D'(0,1) \\ a_n \theta_{n+1}' \in L_{loc}^1(0,1) \end{cases}$$

where $\theta_{n+1} = w_{n+1} - u_{n+1}$, $a_n \in \partial j_{n+1}(\cdot, u_n, u'_{n+1}) \in L^1_{loc}(0, 1)$.

Now, Lemma 4.1 can be applied with the functions a_n and θ_{n+1} . Hence $0 \le u_{n+1} \le w_{n+1}$ in [0, 1] which proves (4.7) by induction.

By Lemma 4.2 and (4.10), u_n is bounded in $W_{loc}^{1,\infty}(0,1) \cap C_0[0,1]$ independently of n. Therefore, there exists a subsequence, still denoted by (u_n) for simplicity, such that if n tens to ∞ then u_n converges to u strongly in $L^{\infty}(0,1)$ and u'_{n+1} converges to u' strongly in $L^1_{loc}(0,1)$ and almost everywhere in [0,1[. From Lemma 4.3 we then have u'_{n+1} converges to u' strongly in $L^{\infty}_{loc}(0,1)$, and

$$(4.13) ||u_n'||_{L^{\infty}(a,b)} \leq K(a,b) \Big(c(a,b) + ||w||_{L^{\infty}(0,1)} \Big) = c'(a,b).$$

Since $j(t,\cdot,\cdot)$ is continuous in the two last arguments we have for all 0 < a < b < 1

(4.14)
$$j_{n+1}(t, u_n(t), u'_{n+1}(t))$$
 converges to $j(t, u(t), u'(t))$ a.e. $t \in]0, 1[$.

On the other hand, for a.e. $t \in]0,1[$

$$|j_{n+1}(t, u_n(t), u'_{n+1}(t))| \le j(t, u(t), u'_{n+1}(t)) \le \max_{\substack{|r| \le ||u||_{L^{\infty}(a,b)} \\ |s| \le c'(a,b)}} |j(t, r, s)| = \theta(t)$$

and $\theta \in L^1_{loc}(0,1)$ from (2.4).

Using Lebesgue's dominate convergence Theorem (see [5]), we also have (4.15) $j_{n+1}(\cdot, u_n, u'_{n+1})$ converges to $j(\cdot, u, u')$ strongly in $L^1(a, b)$.

Now, we can pass to the limit in $(P_{\lambda,n})$, and if $\varphi \in D(0,1)$ with supp $\varphi \subset [a,b]$ then

$$0 = \lim_{n \to \infty} \langle -u''_{n+1} - j_{n+1}(\cdot, u_n, u'_{n+1}) - \lambda f_{n+1}, \varphi \rangle = \langle -u'' - j(\cdot, u, u') - \lambda f, \varphi \rangle.$$

Where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between D'(0,1) and D(0,1). This completes the proof.

REFERENCES

- [1] Alaa, N., "Etude d'équations elliptiques non linéaires à dépendance convexe en le gradient et à donnéees mesures", Thèese, Université de Nancy I, 1989.
- [2] Alaa, N., Pierre, M., Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal., 24 (1) (1993), 23-35.
- [3] BARAS, P., Semilinear problem with convex nonlinearity, in "Recent Advances in Nonlinear Elliptic and Parabolic Problems", (Nancy, 1988), Pitman Res. Notes Math. Ser., 208 Longman Sci. Tech., Harlow, 1989, 202–215.
- [4] BARAS, P., PIERRE, M., Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré, 2 (1985), 185-212.
- [5] Brezis, H., "Analyse Fonctionelle. Théorie et Aplication", Collection Mathématiques pour la Maîtrise, Masson, Paris, 1983.
- [6] LIONS, P.L., Résolution de problèmes elliptiques quasilinéaires, Arch. Rational Mech. Anal., 74 (1980), 335-353.