EXTRACTA MATHEMATICAE Vol. 11, Ntm. 3, 405-411 (1996)

Quasilinear Elliptic Equations with Arbitrary
Growth Nonlinearity and Data Measures

N. ALAA

Université Cadi Ayyad, Faculté des Sciences et Techniques,
B.P. 618, Département de Mathématiques, Marrakech, MAROC

(Research paper presented by W. Okrasinski)

AMS Subject Class. (1991): 35J65, 35125 Received April 25, 1996

1. INTRODUCTION

The purpose of this note is to study existence of weak solutions for the
quasilinear elliptic problem with Dirichlet boundary conditions

—u(t) = j(tult), W (E) + Af in (0,1)
(Pr)

where A € R, j : (0,1) x R x R — [0,+o00[ is measurable and continuous -
with respect to w and ', and f is a given finite nonnegative measure on
10,1[. When f is regular, it is proved in [6] that if (Py) has a nonnegative
supersolution in Wy then (Py) has a solution in Wy N W?2?. Note that
here the supersolution is required to vanish at the boundary. This provides
an a priori pointwise estimate for u'(0) and «'(1). The boundedness on u' on
the whole set ]0,1[ is then obtained by a maximum principle applied to the
equation satisfied by |u'|?. The convexity of s — j(¢,7,s) is there an essential
ingredient.

When f is irregular, one must work with “weak solutions” for which v’ is
not bounded. As a consequence the techniques usually used to prove existence
and based on a priori L*®—estimate on u and u' fail.

When j does not depend on u but has arbitrary growth with respect to
u', existence of weak solution for this type of problems have been obtained in
[1] provided we known the existence of a nonnegative weak supersolution in
WL, When j depends on u' with subquadratic growth and arbitrary growth
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with respect to u. The same result has been obtained in [2] but in more space
dimensions.

In the present paper we are particularly interested in situations where f
is irregular and where the growth of j with respect to u and u' is arbitrary.
Obviously the classical approach fails to provide existence and new techniques
have to be used. We describe some of them here.

In Section 2 we give the precise setting of the problem and state the main
result. We present in Section 3 an approximate equation for (Py). We prove
in Section 4, that the existence of weak supersolutions implies the existence
of weak solutions.

2. STATEMENT OF THE MAIN RESULT

Throughout this paper we suppose
(2.1) f is a nonnegative finite measure on ]0,1[ and 5 : [0, 1] x RxR — [0, 4+o00[
is such that
.2) j is measurable, almost everywhere ¢, (r,s) — j(¢,7,s) is continuous.
.3) j is non decreasing in r and convex in s.
4) Vr,s € R, j(-,r,s) is integrable on ]0, 1].
.5) j(t,7,0) = min{j(t,r,s),r € R} =0.

We introduce now the notion of weak solution and weak supersolution of
the problem (Py) used here.

DEFINITION 2.1. A function u is said to be a weak solution of the problem
(P,\), if

u € W5(0,1) N Cy[0,1]
(2.6)
—u" =j(-,u,u') + Af in D'(0,1).

DEFINITION 2.2. A weak supersolution of the problem (Py) is a function
w such that

€ W;u°(0,1) N Cy[0,1]

(2.7)
—w" > j(,w,w')+ Af in D'(0,1).

Remark 2. 1 In (2.6) and (2.7) u,w € W;2>°(0,1), using then (2.4) we have
i, u,u') € L}, .(0,1) (resp. j(-,w ') L},.(0,1)). Hence every term in (2.6)
and (2.7) makes sense.
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This enables us to state the main result of this paper.

THEOREM 2.1. Assume that (2.1)-(2.5) hold. Assume that there exists a
weak supersolution w of the problem
u € WL(0,1) N Col0,1]
(2.8)
—u" = j(,uu) + f in D'(0,1).

Then there exists a weak solution u of (Py) for all 0 < A <1, and
0<u<w ae in [0,1].

Remark 2.2. 1) It should be noted that there is not growth restriction on
the “lower order nonlinearity” of j as a function in u'. Hence the present
theorem extends some results in [2].

2) It is possible to consider various extensions of problem (Py), for exemple
to other boundary conditions or to a problem with periodicity conditions.

3) For a given problem, on can try several methods to exhibit a supersolu-
tion. Of cours there is no methodology, but, usually, one should try functions
which are locally “simple” (constants, linear, eigenfunctions of simple opera-
tors). The existence of such a supersolution is actually a very general fact, as
proved in [3]. ‘

First we introduced regularized versions of (2.8) with smaller j, with linear
growth. One advantage of this approach is that the corresponding solutions
Uy, are such that u, € Wy and 0 < u,, < Upy; < w.

3. AN APPROXIMATE EQUATION

In this section, we define an “approximate” equation of (Py). For n > 1,
we consider the approximation 7, (¢,7,-) of j(¢,r,-) defined by

~ jt,r,—n) + ji(t,r,—n)(s+n) if s<—n
(1) fltrs) =1 i(trs) it |s| <n
j(t,ryn) + ji(t,r,n)(s — n) if s>n,

where j! denotes a section of the sub differential of j with respect to s. Then
we set

(32) Jn(t7 T:'S) = J:l(t7r7 3)1[U’S"]
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where w is a supersolution of (Py). Then j, satisfies (2.2)-(2.5) and,

(33) ]n S jl[wgn]a Jn S jn—}-l-

According to the result in [1], there exists a sequence (u,) of solutions of the
problem

Uny1 € VV()Lc>o (07 1)
(PA,n)
_ulr:+1 = jn+1('aun7 uln-{—l) + )‘fn-l-l in DI(O’ 1)

where u; = AG(f1) >0 and f, = flju<n)-

4. ESTIMATES. PASSING TO THE LIMIT
We start this section with the following three lemmas, (see [1]).

LEMMA 4.1. Let a(t) € LL.(0,1), v € W,51(0,1) N Cy[0, 1] such that

oc

a(t)v'(t) € Ly, (0,1)
(4.1)
—v" —av' >0 in D'(0,1).

Then v > 0 in [0, 1].

LEMMA 4.2. Let u € Wy'*(0,1), v € L*(0,1) such that

(4.2) 0<u<w in (0,1), 0<—u' in D'(0,1).
Then,
u € W;®(0,1) N Wy (0,1)
and
(43) /()] < —— (c(,5) + [l (0.))
= d(z;a,b) \ ’

for all 0 < a < b < 1. Where d(z;a,b) = min(b — z,z — a) and c(a,b) is a
constant.

Remark 4.1. Lemma 4.2 will provide W,>> estimates for the approximate
solution u,. But this estimate do not allow us to pass to the limit in the
nonlinear terms. We need the strong convergence of u, in I/Vlf)f" (0,1). We
obtain this result from the following lemma.
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LEMMA 4.3. Let (u,) C Wy'°(0,1), such that

(4.4) u,, converging strongly in L*°(0,1) to u
(4.5) u!, converging strongly in L},,(0,1) to v’ and a.e. in ]0,1]

(4.6) 0<u,<u, —u">0 in D'(0,1).

Then
ul, converges to u' strongly in L{2.(0,1).

Proof of Theorem 2.1. Let us prove by induction that
(4.7) 0 < u, <min(w,n) =w,, forall n>1.
First from (P,,) we have for alln > 1

Unt1 € WOLOO(O’ 1)
(4.8)
—un ., >0 in D'(0,1).

By Lemma 4.1 we see that

(4.9) Unt1 >0 in [0,1].

We easily deduce from the definition of w that

(4.10) —wy > (s Wa, Wp)ljw<n) + flw<ny  in D'(0,1).
For n = 1, using (4.8), (4.10) we get

w, — U € W'll’°°(0, 1) N 00[0, 1]

oc

(4.11)
—(w; — )" >0 in D'(0,1)

hence by Lemma 4.1 we have, 0 < u; < w;. Let us assume 0 < u,, < w,, then
from (4.10), the monotonicity of j in r and (3.3), we have

Wnt1 € W/llt;coo (07 1) n C’0[07 1]

‘_'w::+1 Z jn+l('a umw:z—}—l) + fn+1 in DI(Oa 1)
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hence w,; is a supersolution of the problem (P, ,). Since
—(Wny1=Uny1)" 2 Jni1 (s Uny Whpy) = Jng1 (5 Uny Up ) H(1=A) foyg  in D(0,1)
—(Wnt1 = Ung1)" > 8jn+l('7unauln+l)(wn+l —Uny1) in D'(0,1)
then we have
011 € WL(0,1) N Col0,1]

loc
(4.12) —0",, —an0,, >0 in D'(0,1)

ane;ﬂ-l € Llloc(()? 1)

where 0,11 = Wni1 — Uni1, Gn € Ofny1 (s Un, ulyy) € L,.(0,1).

Now, Lemma 4.1 can be applied with the functions a,, and 6,,;. Hence
0 < Uupt1 < Wwyyg in [0,1] which proves (4.7) by induction.

By Lemma 4.2 and (4.10), u,, is bounded in W,,;%°(0,1) N C,[0, 1] indepen-
dently of n. Therefore, there exists a subsequence, still denoted by (u,) for
simplicity, such that if n tens to oo then u,, converges to u strongly in L>(0,1)
and u,,_, converges to u' strongly in L] (0, 1) and almost everywhere in 0, 1[.

From Lemma 4.3 we then have u]  , converges to u' strongly in Lf; (0,1), and

(4.13) Il ay < K (a,0) (c(a,b) + 0]l ooy = €(a,b)-

Since j(¢,-,-) is continuous in the two last arguments we have for all 0 < a <
b<1

(4.14)  jny1(t, un(t), us, ., (t)) converges to j(t,u(t),u'(t)) a.e. t €]0,1][.
On the other hand, for a.e. t €]0,1]

|jn+1 (t’ Un (t)7 uln-i-l (t))l < j(tv u(t)a uln+1 (t)) < max |j(t, 7, 3)' = 9(15)
I < llull Lo a,p)
|s| < ¢'(a,b)

and 6 € L}, .(0,1) from (2.4).

Using Lebesgue’s dominate convergence Theorem (see [5]), we also have
(4.15)  Jn41(-Un,ul,,) converges to j(-,u,u’) strongly in L'(a,b).

Now, we can pass to the limit in (P ), and if ¢ € D(0,1) with suppp C
[a,b] then

0= lm < —up, —Jnt1("s Un, Uy )= Afny1, 0 >=< —u"—j (-, u,u')=Af,0 > .

n—o0

Where < -,- > denotes the duality pairing between D'(0,1) and D(0,1). This
completes the proof. |
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