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1. INTRODUCTION

Kelisky and Rivlin [8] were the first to investigate the powers of the well-
known Bernstein polynomials

z) = Z (Z) Ha-or s (5) men

which are defined recursively: BX(f;xz) = B,(BX¥(f;z)) . They studied the
convergence of B¥(f;z) as k — oo, both in the case that k is independent on
n and, for polynomial f, when k is a function of n. Their results were used
and extended in further research papers ([3, 7, 10, 11, 12]).

In this note we generalize the work of Kelisky and Rivlin on powers of the
Bernstein operators to the two—dimensional case.

The bivariate Bernstein operators on the simplex

S={(z,y)|z+y<1,z>0,y>0}

are given by

n n—i

(1) Bualfimy) =3 > oo

=0 j=0

. i
i(1—z—y)" i f (=, L),
Multidimensional Bernstein operators were early introduced by Stancu [14]
and Lorentz [9]. In 1986 Ditzian [5] proved an inverse result. The weighted
approximation problem was discussed in [4]. Very recently, lower and upper

bounds for the multivariate Bernstein operators on a simplex or a cube are
achieved in [15].
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390 U. ABEL AND G. ARENDS

In this note we first show that for every fixed n = 1,2,3,... BF(f;z,vy)
converges as k — 0o to the linear function interpolating to the function f at
each vertex of the simplex S. This was proved in the one-dimensional case in
[8, 13], and the result is true even in the higher dimensional case (see [3]).

Furthermore, we study the behaviour of BS™(f;z,y), where g(n) is a
positive integer, as n — oo. As main result we determine, for polynomial f,
the limit lim BI™(f;z,y) provided Lim (g(n) /n) exists.

Finally, we remark that our results imply the above mentioned results in
the one-dimensional case if we put y = 0.

2. PRELIMINARY RESULTS

For the study of the powers of the Bernstein operators there is no loss of
generality replacing f by a polynomial. In particular, for the special functions
f(z,y) = zPy? (p,q € Ny) we calculate the associated Bernstein polynomial
Ba(zPy%; z,y).

LEMMA 1. For p,q=0,1,2,3,... withp+ q=s <n we have

1 & P e
(2) Bu(a"y"2,y) = —— St S oloiziyl,
r=0 i+j=r
where T, is defined as
1 2 -1

(1-2)A-2)(1-22)  for r=23,..,5
(3) T, = n n n

1 for r=0,1

The quantities 0¥ denote the Stirling numbers of the second kind, defined
by

(4) " = Z ok ¥) (n € Ny),
’ k=0

where ) = z(x —1)--- (z — k + 1) is the falling factorial (see, e.g., [6]). For
the one-dimensional version of Lemma 1 see [8] (cf. [1, Proof of Lemma 1]).
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Proof of Lemma 1. Following an argument of Ditzian [5] we set

F(z,y,z i nz: ( ) < )a:"ymz"_k‘m =(z+y+2)"

k=0 m=0
Note that B,(1;z,y) = F(z,y,1 —z—y) =1 (n=1,2,...).
For b%“’k = k@Wz*~i we have, by (4),
kP = kO gk =
T ;g z Z;z ”8 -z

Therefore, we get with z =1—2 —y

n n—k
n EN? /m\?
B P i o k, m _n—k—m
@ =S5 ()7 () () =
n n—k P q j
n n—k i i o m n—k—m

> (k)(m>2( )ZW(— )=

=0 m= =

J=

\
1 S i i J 2 =2 k —k—
- npta ZZG O'] y amzay] Z Z z ymz" "
1=0 j=0 k=0 m=0
1 /4 q
— 3> okoiztyn) (@ +y 4 2)"
n =0 =0
1 2.4 '
- ZZn ImipjoLoliziy’.
n =0 j=0 .

Following Kelisky and Rivlin [8], we use the language of linear algebra. We
consider for p,q € Ny the functions f(z,y) = zPy?, where p+ g = s is a fixed
integer satisfying s < n. Let A = (A;;) denote the block-matrix consisting of
the submatrices

oiog - 0407
(5) A,'j = ﬂin’_’ (’L,] = 1, e ,S).

ojoy -+ ogo;
Because of ¥ = 0 (k > n), A is upper triangular with 4; = E;;, (@ =
1,...,s), where E,, denotes the m X m unit matrix.

Then A is the corresponding matrix of the operator B,,. By Lemma 1, the
coefficient of ziy? in B, (zPy?; z,y) is the element in the (j + 1)-th row and the
(g + 1)-th column of the submatrix A;y;piq-
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LEMMA 2. The matrix A is similar to a diagonal matrix.

s+1

Proof. 1t is sufficient to prove that A possesses m = ) k linearly indepen-
k=2

dent eigenvectors. We show that for every eigenvalue 7; (¢ = 1,...,s) there

exist ¢ + 1 linearly independent eigenvectors.
The eigenvectors v corresponding to the eigenvalue m; are the nontrivial
solutions of the system of linear equations ‘

(6) (A—mE,)v =o.

If we divide the matrix (A — m;E,,), the vector v and the null vector in suited
submatrices the system becomes

Dy, Dy2 Dy (%1 o
(A — WiEm)“ = O O D23 (] = o ;
O O D33 V3 (o]

i.e. the single equations
Dllvl + Dlz’l)z + D13’03 = 0, D23'U3 =0 and D33’U3 = 0.

Here, O and o denote a suited null matrix resp. null vector.
The square submatrix Ds3 is upper triangular with det D33 = w4, -+ - 75 #
0 and hence vz = 0. From this we get

(7) Dy1v1 = —Diovs.

By the same argument, there holds det D;; # 0. If we choose v, = e; (j =
1,...,1 4 1), where e; is the unit vector of i + 1 components and the 1 at

position j, Equation (7) has an unique solution v; = vy ). The vectors

No)
i 1

v=2v9 = ¢ G=1,...,i+1)
(0]

are solutions of (6) which obviously are linearly independent. This proves
Lemma 2. |

Let V be the matrix cohsisting of the m eigenvectors from Lemma 2 as
columns. Since these eigenvectors are linearly independent the matrix V is
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invertible and we have V"' AV = A with a diagonal matrix A of the form

7T1E2 O O R O

O mE; O - 0]

A= O O 7T3E4 s O
O 0 0 - mE,.,

Analogous to A we divide the matrix V' = (Vj;) in submatrices V;; of type
(+1,5+1) (,j=1...,9)

LEMMA 3. The matrix V = (V;;) is upper triangular and the submatrices
Vii (:=1,...,s) are unit matrices.

Proof. In Lemma 2 we have seen that there are ¢ 4 1 linearly independent
eigenvectors to each eigenvalue m; (i =1,...,s). Let o9 (G =1,...,i+1)
be eigenvectors belonging to the eigenvalue m; (i = 1,...,s). Lemma 3
follows by the special form of the matrix V which consists of the eigenvectors
as columns. 1§

Recall that V consists of the eigenvectors vﬁj ) (j=1,...,i+1) of A belonging
to the eigenvalue m; (i = 1,...,s). Let the matrix V! be build up by the
(¢ 4+ 1) x (j + 1)-submatrices W;; (4,5 =1,...,s).

LEMMA 4. The matrix V' = (W,;) is upper triangular and Wy, = Ej 4
fork=1,...,s.

Proof. Since V is upper triangular, it follows the first part of Lemma 4. In
" order to show Wy, = Eyyq (k=1,...,s), we represent V! by its adjoint

1 ~
-1 _ T
®) Vo= detV v
with 0;; = (—1)*"7 det ‘7,-j, where f/;-j denotes the minor of V', i.e. the matrix
obtained from V by crossing out the i-th row and the j-th column. Note that
detV = 1.
Now let & be fixed and Wkk = (’U)”) Then W;; = 17ji~

First we study the case i = j. We arrange V! to be a m x m-matrix.
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For 7 = j we have

1 vy Uim
~ 0 1 Uom
Vii= : i

0 0 1

and therefore U;; = (—1)? det ‘7ii~: 1 which gives, by (8), wy; = 1.
In the case 7 < j the matrix V;; is upper triangular and the main diagonal
contains at least one zero. Therefore

p— 1 ye
" detv'Y
It remains the case ¢ > j. Let v;; be an element of Vi with ¢ > j.
Furthermore, let V;, be the submatrix which results from V}; by crossing out
the 4-th row and the j-th column. Because of ¢ > j the matrix Vj, contains a
row consisting of all entries 0.
Next we consider the matrix

Ui = (“1)i+j det i;;lj =0 and thus wji =0.

Viie Vip --- Vi
B O Vog ++- 2*;‘:
o 0 --- Vg
where V%, represent the submatrices V., (m = 1,...,k — 1) without the

j-th column. We see that D has one row consisting of all entries 0. Thus
det D = 0 and it follows

Uy = (~1)"detV;; =0  which implies  wj; = ——

Hence Wy, is an unit matrix for k =1,... ,s. |1

For abbreviation, let C;; denote the matrix of type (i + 1,5 + 1) with

Uy

(9) A; = Cij.-

LEMMA 5. For the matrix V! = (W;;) we have

(10) le = Clj.
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Proof. On account of the properties of the Stirling numbers of the second
kind Cj; is of the form
10 --- 00
C”‘(o 0 -~ 0 1)'

Because of W,; = E, the assertion is obvious for j = 1. We proceed with
mathematical induction on j. Let now j > 1. If we calculate the submatrix
at position (1,7) on both sides of the equation V!4 = AV, i.e.

Wiy Wi, Wi - Wy A e Ay Ay
O Wy Wy - Wy : :

? O W33 oo W3s 0, ... Ajj “en Ajs

o 0 0 - W, O .. O - A.
mE, O O - O Wi o Wy oo Wi

- 0] O mEy --- 0] o - Wy - W |,
O 0 0 - mE.y, O ... 0 ... W,
we receive

J
Z WliAij = 7T1W1j.

i=1

With A]'j = 7l'jEj+1 we get
j—1
ZWMAij =(m - Wj)Wu
i=1

and hence
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The special form of the submatrix C;; implies

1 =21
Wi = T — T ; nf"imajclj.
In order to prove (10), we have to show
j-1 1 )
mea;zm—ﬂj (1=23...)

=1

which easily follows by induction on j. 1

We defined the matrix A to consist of submatrices A;;. Now we consider the
actliial rows and columns of A. For that reason in the following we denote the
number of rows and columns of the matrix A until the end of the submatrices
A, by m(r). It is obvious that for r =1,... ,s

r+1
m(r) = Zz and we set m(s) =: m.
=2

Furthermore, for p + g = r let eg]) denote the unit vector of m components
and the 1 at position m(r) — p.

3. THE POWERS B As k — oo

In this section we investigate the limit of BY as k — oo for fixed n.

T
s k !
LEMMA 6. Let Arel?) = (ag,)n_,,, ... ,a,(n’)m_p) , then
~ )
(11) Bs(xpyq9 T,y) = Z Z am(u+V)—u,m—px”yV’
p=0r=0
where agfzo)’m_p is to be read as 0.

Proof. Let
s s—u
P(z,y) = Z Z oy, Ty’

p=0 v=0
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be an arbitrary polynomial of degree s with ap o = 0 (for example Bi (zPy?; z, y)
with p + ¢ = s). Then we have, by Lemma 1,

s s—p
Bn(P ZZﬂWx“y _Zzauu 37 y z y)
p=0 r=0 p=0r=0
s s—p
_ZZ A IH_VZ mn' Z C(uv Y
pn=0rv=0 i+j=r

_ Z Z Z Z al“/ ,n.r,nrc(li V):L.zy

p=0v=0r=0 i+j=r

- Z Z Z Z auvam(r)—i,m(wu)—uwiyj-

p=0 r=0 r=0 i4j=r
This obviously means that

(ﬁl,OnBO,la . 7ﬁs,07 L 7ﬂ0,s)T = A(al,oaao,la s 7as,07 s 7a0,s)T-

The lemma now follows by mathematical induction on k. |

LEMMA 7. Let n be a fixed positive integer, then

(1,0,0,...,0)T for p=s,
(12)  lim Akl = (0,1,0,...,0)T for q=s,
e (0,0,0,...,0)7 for p,q<s.

Proof. The equation A = VAV ™! gives lem Ak =V (kli)m A’“) V1. Be-

cause of klim ¥ =1 and klim 75 =0 (j=2,...,s) there holds
— 00 —00
wE, O .- @) E, O --- O
O 7ntEy --- 0 o O --- O
lim A* = lim . . . . = .. .
k— o0 k— o0 : : .. : : : . :
0] o - 7#*E., o 0O --- O
By Lemma 3, V;; is an unit matrix and we get
Wll e Wls
O --- O
lim A* =V (lim Ak> V= . .
k—o0 k— o0 : :
o --- O

Applying Lemma 5, it follows (12). §
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Combining the preliminary results we receive as our first main result

THEOREM 1. For each function f defined on
S={(=y |lz+y<1l,z>0y>0}
and every fixed positive integer n there holds
. k(e.
Jlim B,.(f;z,y)

Proof. Let B,(f;z,y) = i sz_:l a;;z'y’, then

1=0 j=0
By(fiz,y) = By (Bu(fi3,y)) =
s s—i o s s—i o
B DY > ayaty’ | =)0 aiBE N (a3, y).
=0 j=0 =0 j=0
Applying Lemma 6 and 7, we obtain
S s
. k(g _ ) .
kll,rg, Bn(f) T, y) = Qp,0 + Z Qi 0T + Z Qo,5Y-

i=1 j=1

By considering the definition of the bivariate Bernstein operators it follows

(13). 1

4. THE POWERS BS™ As n — oo

After investigating the iterates of the Bernstein operators for fixed n we
now study the iterates B, where g(n) represents a positive integer for every
n € N. For that reason we study the behaviour of the eigenmatrix V = V(n)

and its inverse V! = V~!(n) as n — oo.

From the equation AV = VA we obtain for the submatrices V;; of the

matrix V
T J 1
14 Vi, = * E -Cire Viei
( ) J 71_] _ 7ri WS nk_l k k]

with Cj as defined in (9).
We remark that for every 7,7 € N with ¢ > j

mi—mp=-m T (G ) + 4 (1)) +0T)] (n = oo).
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LEMMA 8. For the submatricesV;; = V;;(n) (4,5 =1,...,s) of V. =V(n)
we have

(

-1 j—1
L, kH e I[1 Crrt1 + Dij(n) for i <j,
=1

=1

Ez'+1 for i = I

L O for 1> j,

where D;;(n) is a certain (i + 1) x (j + 1)-matrix whose entries are all
O(n™') as n — oo.

Proof. In the cases i = j and ¢ > j Lemma 8 follows by Lemma 3. In the
case ¢ < j we start with the equations
T J 1 . .
(16) Vi = > S G Vg (0<7)

T~ Ty 5

which follow from AV = VA and Lemma 3. Note that, by (3), m; = 1 and
m; —m; = O(n™') as n — oco. Formula (16) implies (15) for the special case
i =7 — 1. Then Eq. (15) follows also for i = j —2,... ,1 by induction on . 1

By (9), (5) and afﬁ = ("*') for all ¢ € N it can be easily shown that the

j—1

element of [] C; .11 at position (a, B) is
. . Jj—pB+1 B—1
j—1 i v . ..
, for 2<a<i, a<fB<a+j—1i,
(=) () 1)
"
H <2>, for (a,08)=(1,1) andfor (a,8)=(+1,j+1)
p=i+l
and O else.

i—1
In order to handle the factor - [] 2 in (15) note that for k < j
k=

j—1 .
nJ i Ly

m—mp=—m [ (k+ (k+1) 4+ (1) +O0(n7*)]

G-KG+E-1)
2n
After some calculations we get

+0(n™?) (n — o0).

= —T
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LEMMA 9. Fori,j =1,...,s we have lim Vj;(n) =V = (vgbj)*) with
n—o0

( O A AN G Ty
—1)i—it e la2l for 2< o < 4,
RN (ﬂ—a) (o) rrses

aSﬁSa+]_Za

17) )" = 3y (i-1
(17) w5 ] (1) (1()23(1_2;) for (o,B) = (1,1) and
(@,f) = (i+1,j+1),
0 else.

In a completely analogous fashion the limit of V~! as n — oo may be
calculated. We suppress the details and give only the result.

LEMMA 10. For the submatrices W;; (4,5 = 1,...,s) of V7! = V~!(n)
we have

¢ i i—1
1 J Th—1 J . .
— Crri1+D;j(n) for 1<y,

nJ‘_’ kl;_[{_l T — T ,1;[, r+1 ]( )
(%) ") Ein for i=j,
L O for 1> j,

where D;;(n) is a certain (i + 1) X (j + 1)-matrix whose entries are all O(n™")
asmn — 0o.

Proceeding as above we get

AR : W = (DT
LeEmMMA 11. For i,5 = 1,...,s we have nll)n;oW”(n) =W = (waﬁ )
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with

for2 <a<s,

G!Sﬁsa+]—'$,

19) wly” )
(19) w =9 ((3)4_(:_—11)) for (o, B) = (1,1)

and (o, 8) = (i + 1,7 + 1),

0 else.

In order to formulate our second main result we put II; = le 7t (jEN)
n—oo

which is easily determined, by (3), to be II; = exp (—(g)) .
THEOREM 2. Suppose g(n) is a positive integer for every n € N and

(20) lim 9(n) =17

n—oo 1

exists, where v = oo should be allowed. Then for p + q = s € N we have

(21) lim BI™ (zPy?; z,y) Z Z bijz'y’,
nreo k=1 i+j=k
where the coefficients b;; = b;;(p, q) are given by

( 2 k—1Y (k—1
ci?(,i:i) (s_lf>(i‘_i)# for1<i<p<s—1,

p—i) (2D

(22) by =1 7 (Z) (Z B i) fori=p=0

andi =k, p=s,

L 0 else
with
(v > r—k 117V (i_z)
(23) cy = D ()T iy (kEN).
r=k (r—k)( S—7r )

In the case v = oo the quantity II] in (22) means 1 for j =1 resp. 0 for j > 2.
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Proof. By the equation A9™ = VAV -1 we conclude

lim AY™ = V*A*(V*)™!

n—ro0
where
A* = lim A*™
n—oo
is a diagonal matrix with entries II] = lim Hg(")/ " (j=1,...,s) on its

n—o00
main diagonal. The matrices

V*=1lmV and (V) =(V*)"'=lim V!

n—0o0 n—oo

are completely determined in (17) and (19). Thus the convergence in (21) is
proved.

We set lim A9 = A* with A* = (A;,,) (p,v =1,...,s) with subma-

n—oo

trices Ay, of type (1 +1,v +1). Note that A7, is a null matrix for u > v.
We consider the case u < v. In this case we have

v
* * * ¥
A4, = E V. WY,
T=u

where V. and W/, represent the submatrices of V* and (V=1)" respectively.
The entries of the submatrices A, are given by

(uV) vazv(ur) wi/r}u l<a<p+l,1<B<v+1).
Now we insert (17) and (19) in (24). For (o, 8) = (1,1) we get

T\ (r—1 v\ (r—1
= el = 3 oy e )

y (50 B (Y

Using the identity (T) (V> = (V B ﬂ) <V> for 4 < r < v we have
YA\ T ) \M

(25) al”)” = (") (” -1 Z 7 (—1)"* %

p)\p-1) = v—r
Furthermore, we get a(“ - B=2,...,v+1)andfora=p+1
(26) aiﬁ-'{)ﬁ = agﬂui)z -B-
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Now we deal with the general case 2 <a<py, a<f<{a+v—p:

& ) (e)*

H,T Vv
Z”at Weg
t=1

EEW o) I Gy R o [ o = r—ﬂ)< vt )
= C0 ey (":1)(":1)2( ¢ - -t

v—r

IR o) R ()| o) ( E u)
B T A T ey !
so that, by (24),

e (v=1\" (v —p) () & N
aly” = <u—1> <ﬂ_g>iu—_1%§ﬂ:(—l) ()

o-1) (5 ol (ain

The coefficient b;; in (22) is the entry of A7, ; . at position (j +1,¢9+ 1),

i.e.
i+7,p+q)* ks)*
bij = g'z-kl],::lq) = a§c+sl)—i,s+1—l7
2 k—1y (k=1
s—1 s_k) (i—l)( i ) () .
= ) e G (1<i<k),
(k - 1) (P i) GO0
(k,s)™ _ -1 ) .
bor, = a;:ii)*ﬂ = { akﬁﬁsﬂ N (’sc) (2_1)021 forp =0,
o 0 else,
and
bko=a§k’3); _ O(k . o for0<p<s—1,
e aiy” = () G)cks forp =s.

Hence, the proof of Theorem 2 is completed. 1
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Remark. In order to see that Theorem 2 also contains the one-dimensional

case we put p = s (s € N) and y = 0. Then we have

i (N (8- —0) = k
JLI&Bg" (.’L‘ 7$ay_0) —;bkoil?

with

_ () (51 @
o= (p) (:23)

which is the classical result of Kelisky and Rivlin [8].
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