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1. INTRODUCTION

One of the main purposes of these notes is to offer a basic dictionary of the
arcanes used by practitioners of geometrical mechanics to researchers on other
areas of the study of dynamical systems. To achieve this in a reasonable way,
we will try to expose the rationale behind some of them. We beleive that it
could be a good starting point to summarize some of the assumptions and/or
creeds that most Geometrical Mechanics People (GMP for short) have:

1. Geometrical modeling of physical systems is useful.

2. The Geometry involved in such process is natural.

These principles are inspired by Physics and Mathematics (it is interesting
to point it out that GMP’s are mainly recruited from the ranks of theoretical
physicists and differential geometers)®.

!We should point out here that the comments, remarks and ideas contained in this intro-
duction reflect only a partial description of the different viewpoints held by the people that
have contributed to the foundations of Mechanics, continuum mechanics and classical Field
Theories. In this sense we probably should add a third postulate to (1) and (2):

3) Each GMP has a optimal set of reasons to support his/her viewpoints on the foundations
of the subject.
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The first assumption comes naturally from the pursuit for fundamental
laws of nature. This quest has led to the introduction of a variety of geometri-
cal ideas in Physics. As a consequence of this it has become evident the power
of geometry and topology to unify and clarify concepts and results, and this
makes the second assumption unescapable. This is, the geometrical ideas that
have been arising along this process are the natural geometrical notions intro-
duced and studied by differential geometers (in some ocassions the same ideas
have been discovered almost simultaneously and unconnectedly in Physics and
Mathematics). :

A rough simplification of how this mechanism operates is offered for in-
stance by Relativity Principles [Be76]. Relativity principles in Physics state
that physical phenomena are independent on the particular frame of reference
we use to describe them within a previously defined class of them. The right
tool to express mathematically this idea is to use intrinsic geometry with re-
spect to some a priori chosen group and this is another way of stating Klein’s
“erlangen program” for the geometrization of mathematics. Eventually the
general covariance principle forces us to use intrinsic geometry on manifolds
to formulate physical laws.

From the discussion above we are tempted to extend the formulations of
ordinary relativity principles and state a metarelativity principle saying that
the description of physical systems must be done on the realm of manifolds (or
differential geometry). Then, from now on we will assume that we are dealing
with systems that can be modeled using smooth manifolds (either finite or
infinite dimensional).

We must remark here that there are obvious situations were the previous
discussion does not apply and the principles (1) and (2) have to be reformu-
lated. For instance it is not obvious what is the right foundational setting to
describe some quantum (finite and infinite dimensional) mechanical systems
[Ja68], [Ba9l].

Assuming in what follows that differential geometry could be a good tool -
to model dynamical systems, we can ask ourselves, what do we actually want
to model?

If we are describing evolution systems defined using some space of param-
eters M, usually another smooth manifold, the simplest choice for modeling
is the space of all trajectories or histories of the system [So70]. Usually such
trajectories v are solutions of an ordinary or partial differential equation. Such
space of all trajectories of a dynamical system (physical or not) will have a
local description using initial data or Cauchy data, and we will obtain in this
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Figure 1. Geometrical modeling of physical systems.

way a manifold structure, possibly with singularities, for it. An alternative
modeling can also be considered. Instead of thinking in time evolution and
initial value problems, we can consider atemporal observers, i.e., observers
“seeing” the histories of a given physical system as a whole?. To describe
such global behaviour, variational principles are the right tool. The calculus
of variations provides the bridge between the two approaches sketched here
(see Fig. 1.).

We must point it out that not all systems are parametrized by smooth
manifolds. Many interesting situations arise where this is not possible but we
will not discuss the meaning of geometrically modeling this kind of systems in
these notes.

It can seems odd the effort to model the set of solutions of the system
that we want precisely to solve. This is not so because a substantial amount
of information about the structure of such solutions could come from such
modelization. Nevertherless, it is much more frequent to make a strong sim-
plification to the modelization problem by considering as fundamental entities
the initial data of the systems we observe. This is very much attached to our
psychological perception of real, or fundamental, as those things that we can

*Notice that this is not equivalent to postulate Lorentz covariance.



THE GEOMETRY OF DYNAMICS 83

actually touch, control, measure, etc. Then, one of the main task for GMP’s
is to understand the space of trajectories of a (family of) dynamical system(s)
using the geometry and/or the topology of the space of initial data®.

The previous declaration makes also possible to select a priori some partic-
ular ODE’s and PDE’s as more interesting than others. We will discuss this
point in the coming sections.

2. HAMILTON’S EQUATIONS OF MOTION AND POISSON BRACKETS

Inspired from Physics and in particular by Classical Mechanics [Ar76],
[Ab78], [Ma85], [Lb87]*, it is a good idea to consider systems whose initial
data are parametrized by ¢', p;, where ¢* are local coordinates describing the
points g of a smooth manifold @) and p;, the canonical conjugate momenta, are
local coordinates describing covectors on such manifold, i.e., points p in the
contangent bundle T*Q of (). An arbitrary dynamical system in such space
will have the general form

¢ = f(¢,p); pi = 9i(q,p). (2.1)

We can write the previous system of ODE’s in an operational way using the
first order differential operator or vector field,
.0 0
X=f—+4g—. 2.2
f ac 9, (2.2)
The vector field X is a linear operator on the space of smooth functions on
T @ that encodes the infinitesimal evolution of any quantity defined on it, this
is, if FF € C*(T*Q), then the infinitesimal change F' of F' along the solutions
of the systems of egs. (2.1) is given by:

iaF_|.. QE
-0q’ glapi

F=jf = X(F). (2.3)

In this sense the previous equation, eq. (2.3), can be considered as an intrinsic
description of the system (2.1).

31t is also a common attitude to postulate the existence of a space-time arena where
the systems under study evolve and to derive their geometrical properties from this basic
structure [Tr70], [La60], [Ar76]

“We will not refer here to the extraordinary good classical literature on Mechanics because
we are concetrating ourselves in the geometrical modeling problem. Thus the texts we are
quoting are those making an special emphasis on the geometrical aspects of Mechanics.
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A fundamental axiom in the description of physical systems is what we
could call the Energy paradigm, that can be stated as follows:

“For every physical system there is a function defined on its space of states,
called the energy or Hamiltonian of the system, containing all its dynamical
information”.

Just forcing slightly the previous statement we can equivalently consider
that, in the particular case that 7*(@) models the state space of a family of
dynamical systems, there is an assignment to any function (the possible en-
ergies) H on T*Q of a vector field X describing a dynamical system. For
such assigment to be meaningful it would have to satisfy some fundamental
physical requirements. For instance it should be:

1. Linear. This is, if we add energies the corresponding dynamical system
will be the sum of the corresponding factors:

Xuvm, = Xu, + Xn,; Xow =AXyg VH, Hy,H, € COO(T*Q), vieR.
(2.4)

2. Energy conservation. The dynamical system defined by a given energy
will preserve its own energy®:

H=Xy(H)=0. (2.5)

3. Compatibility of dynamical evolution. If we have two energy functions,
H, and H,, then the infinitesimal change on an arbitrary function when we
act first with Xy, and then wiht Xy, , is the same as the change suffered by
F when we act in the reverse order plus the change induced by the action of
Xy, on Hy:

X (XHz(F)) = X, (Xn, (F)) + Xy, (1) (F)- | (2.6)

A more transparent way of expressing this property is to think on the dif-
ference between the infinitesimal variations of a quantity along two different
dynamical systems Xy, and Xg,. It is natural to think that such difference
is caused by the variation of energy of the second along the action of the first,
i.e., the difference term will be caused by the modified hamiltonian Xy, (H,),
and this is what eq. (2.6) states. It is clear that the order of the dynami-
cal systems can be reversed and the same argument will lead us to conclude

®We will not consider time-dependent dynamics here, even though there are nice geomet-
rical frameworks for them.
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that the difference will have to be generated by the Hamiltonian X, (H;),
and obviously this has to be — Xy, (H,). We will see immediately that this is
precisely what happens.

2.1. PoIssON BRACKETS From these few assumptions on the nature of
the assigment H — Xpg, we discover the following important consequences.
Let us introduce first some traditional notation and denote by {H, .} the vector
field Xp. Then, eq. (2.4) implies that the map {.,.}: C®°(T*Q) x C>°(T*Q) —
C>®(T*Q) defined by (F,G) — {F,G} = Xr(G) is bilinear. From energy con-
servation, eq. (2.5), we obtain that {.,.} is skewsymmetric. In fact, consider
F, G two arbitrary functions. Then

0={F+G,F+G}={F,G} +{G,F}. (2.7)
Because X is a vector field (hence a derivation) we get Leibnitz’s rule
{F,GH} = G{F,H} + H{F,G}, (2.8)
and finally, from the third requirement, eq. (2.6), we get Jacobi’s identity
{F,{G,H}}+{G,{H,F}} +{H,{F,G}} =0. (2.9)

Notice that Xy, (Hs) = {H,,Hy} = —{H,,H,} = —Xy,(H,) as it has to be.
We have been led to the fundamental notion of Poisson brackets. Let P be
now an arbitrary smooth manifold. A bilinear map on C*(P) satisfying egs.
(2.7), (2.8) and (2.9) will be called a Poisson bracket on P and (P,{.,.}) a
Poisson manifold. Thus, we have shown that the energy paradigm forces us
to choose a Poisson bracket on T*Q. See [Jo64], [Li77], [We83], [Lb87], [Va93]
and references therein for a more detailed description of Poisson manifolds.

Several Poisson brackets have been discovered in the last two hundred
years. The most well-known is

" (OF 0G OF 0G
(G =3 ( S e~ aq,.) , (2.10)

which is the one mostly used in Hamiltonian mechanics®.

5Tt is interesting to point out here that it was J.L. Lagrange the first who used a Poisson
bracket in discussing the structure of the equations describing the evolution of the elements
of a planetary orbit.
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Another Poisson bracket of great interest is the linear Poisson brackets
discovered by S. Lie and rediscovered several times in the last 30 years. It is
defined by the fundamental commutation relations,

{zi, 25} = Climn, (2.11)

where Cf; are the structure constants of a Lie algebra (see [Ca94] and refer-
ences therein).

It is important to point it out that in principle, unless some further physical
requirements are added to the list above (see §3 for more comments on this),
there are no privileged Poisson brackets and any other Poisson bracket on 7*Q
could be used to describe Hamiltonian mechanics.

It is not known yet how to classify the Poisson brackets existing on a
given manifold, not even in the nondegenerate case that we will discuss in the
following section [Gr93]. '

2.2. SYMPLECTIC VERSUS PO1ssON GEOMETRY A Poisson bracket {.,.}
defines a contravariant 2-tensor by means of

{2%,2°} = A**(2), (2.12)

where z® denotes a local system of coordinates on our space of initial data
conditions (that we can consider not to be necessarily T*Q). Under changes
of coordinates it is easy to check using the linearity of {.,.} and eq. (2.8) that
A transforms as the components of a contravariant skewsymmetric 2-tensor
called the Poisson tensor and denoted by A. The Jacobi identity is equivalent
to an integrability property of this tensor, to be precise A satisfies that [A, A] =
0, where [.,.] denotes the Schouten-Nijenhuis bracket of multivectors [Li77],
[Va93].
We will say that the Poisson bracket {.,.} is nondegenerate if det A%® # 0.
In such case, we can define the inverse tensor w,, = (A™1),; where A% (A1), =
02. The 2-form '

W = wepdz® A d2°, (2.13)
is nondegenerate and because of the Jacobi identity, eq. (2.9), it satisfies,

6wab

0z¢

+ cyclic = 0,

i.e., w is closed
dw = 0.
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A nondegenerate closed 2—form w is called a symplectic form and the manifold
where it is defined is called a symplectic manifold. The well-known Darboux
theorem [Go69], [Ab78] states that locally any symplectic structure is like the
symplectic structure obtained from {.,.},, i.e.,

wo = Z dq* A dp;. (2.14)

i=1

Thus the local classification problem of Poisson structures is completely solved

in the nondegenerate case. In the degenerate case there is a local splitting
theorem by Weinstein [We83]. It is also true that any Poisson manifold is
foliated by symplectic manifolds. These symplectic manifolds are integral
submanifolds of the (singular) integrable distribution defined by the image of
the Poisson tensor A. The leaves of maximal dimension correspond to the
level sets of the Casimirs of the Poisson brackets, i.e., those functions that
commute with all the others.

Some global theorems are known [Gr85], [Gr86] and very recently there
has been new results on 4-manifolds but the global classification problem is
widely open.

Thus we can conclude these remarks noticing that if we are describing a
physical dynamical system I' on T*@Q the energy paradigm imply that using
the Poisson bracket {.,.}o, it will have the form

_om . _ om
q _api’pﬁ_ aqi'

(2.15)

Intrinsically, eq. (2.15), can be written using the symplectic form (2.14), as
irwy = dH. (2.16)

Even if the parameter space is not T*@Q but the Poisson structure that we
use is nondegenerate, the dynamical system I' will be written again in appro-
priate coordinates as in eq. (2.15). Egs. (2.15) will be called in what follows
Hamilton’s equations of motion and the intrinsic expression provided by eq.
(2.16) will be refered to as the dynamical equation.

It is clear from what we said that the same ideas apply both in finite and
infinite dimensional systems. Many applications of these principles and ideas
can be found for instance in [Ab78], [Gu77], [Gu84], [Mr74].
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3. EULER-LAGRANGE EQUATIONS AND THE GEOMETRY OF SECOND
ORDER DIFFERENTIAL EQUATIONS

In spite of the attractiveness of the previous discussion, it must be noticed
that experimentally (and historically) things happen in a different way. In fact
it is easy to convince oneself from direct everyday observations that accelera-
tions are proportional to the forces acting on the systems’, i.e., the equations
describing the dynamics of physical systems are second order differential equa-
tions that will be written as,

qi = fi(qa q, t)a (317)

and they will be called Newton’s equations of motion. Here, ¢* denote as
before any set of coordinates parametrizing the configurations of our system.
The initial data for Newton’s equations are given by ¢*, ¢* and geometrically
they define the so called tangent bundle of the configuration space Q. It will
be denoted in what follows by T'QQ which is also commonly called the velocity
phase space (its points corresponds to dynamical states or trajectories of the
system). Of course, it is possible to transform the previous system, Egs.
(3.17), into a first order system introducing a new set of variables v*. Then,

qi = vi; o = fi(Qa'U’t)'

This makes transparent the independence of the initial data ¢*, v*, but adds
nothing to the problem of solving Newton’s equations (3.17).

Some help will be obtained if we would be able to use the geometry of
Hamilton’s equations to study them. But we do not have a Poisson bracket
available in T'Q (as the bracket {.,.}o is in T*Q) to set them in Hamiltonian
form or, in other words, we do not have a realization of the energy paradigm
on T'Q. Looking for a Poisson bracket {.,.} and a Hamiltonian function H
on TQ such that Egs. (3.17) would be written as F = {F, H}, will be called
the weak inverse problem of the calculus of variations. If the Poisson bracket
{.,.} is required to be nondegenerate®, there will be a symplectic form w on
TQ such that the second order vector field

—vi—?—+fi 0
- Oq ovt’

r

"This property plays the role of a constitutive equation for a dynamical system, in fact
for mechanical systems this is equivalent to p; = mg'.

8This requirement is equivalent to the nonexistence of global Casimirs, i.e., there are no
superselection rules for the dynamical system.
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will be hamiltonian with hamiltonian H, i.e., it will satisfy the dynamical
equation (2.16) irw = dH. This problem, slightly stronger that the one before,
could be called the symplectic inverse problem of the calculus of variations.

These problems stated in such a generality have been only partially solved
(see for instance [Du93], [Ca95] and references therein). On the other hand
the Poisson brackets that usually arise in physical systems of mechanical type
have the property that

{¢".d'} =0, (3.18)

for any pair of configuration space coordinates q¢*, ¢. This property reflects
the localizability of mechanical systems. Upon quantization, following Dirac’s
prescription [Di64], Poisson brackets become commutators of the correspoding
quantum observables, then, the previous equation tells that the positions in
configuration space of the system can be simultaneously measured, i.e., the
system is localizable in configuration space. For this reason Eq. (3.18) will be
called the localizability condition. In consequence, if Newton’s equations are
describing a bona fide physical system, we can ask if there exists a nondegen-
erate localizable Poisson bracket {.,.} such that with respect to it the vector
field I' is Hamiltonian. This problem is called, for reasons that will become ev-
ident in what follows, the inverse problem of the calculus of variations. Under
different perspectives this problem has been the subject of intensive research.
The first solution to it can be traced back to Hemholtz [He87] and its geo-
metrical presentation first appeared in [Ba82]. Apart from these, other main
contributions to it are due to Douglas, Sarlet, Anderson, Crampin, Henneaux,
etc. (see for instance [Cr81],[He82], [An92] and [Mo090] and references therein).
The main result related to this problem can be stated as follows:

THEOREM 1. (The inverse problem of the calculus of variations [Ca95]) A
second order differential equation I is (locally) hamiltonian with respect to a
localizable symplectic form iff there exists a (local)® Lagrangian L for it.

What is the meaning of the existence of the Lagrangian L? To answer this
question we will discuss succintly the proof of this statement. We will work
locally (the theorem is a local statement) and we will assume that there is a
closed 2-form w of the form

w = a;jdg" A dg’ + bijdg* A dv? + c;jdv’ A dv.

9See [Ba83] for the discussion of many examples of interest possessing locally defined
Lagrangians and [Ib90] for the description of the obstructions to find global Lagrangians.
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The localizability of w implies that the coefficients ¢;; must vanish and the
nondegeneracy of w implies that det b;; # 0. Because w is closed by Poincaré’s
lemma there must exists (locally) a 1-form © = A;dq" + B;dv' such that
—dO = w. In consequence we get the following equations for the coefficients
A;, B; and a4, b;;:

0A; OA,

g o= %5 3.19
aj an aq, ( )
_ 04A; 0B, :
bij - avJ - aql’ (3'20)
_ 8B; 0By
0 = Bk Bl (3.21)

From the last of the previous equations, eq. (3.21), we get that it must exist
a function ¢(q,v) such that
o¢

= o
Then, the 1-form ©' = © — d¢ satisfies that dO' = w and it has the form

v (4 9P\
@—(Az aqz,)dq.

Writting again ©' as O, what we have shown is that there exists a 1-form
© = A;dq’ such that w = —d©, and

0A;

= i

bi; (3.22)
Because the vector field I' is locally hamiltonian with respect to w, then
d(irw) = 0 and if T' is written locally as

i 0 g
F—’U—a?'Ff

0
ovt’

the previous condition is equivalent to the existence of a local function H such
that

O0H : ;
a_qj = v’aij - fzbij; (323)

ov?



THE GEOMETRY OF DYNAMICS 91

Then, from egs. (3.22), (3.24) we get
0H 0A;

T 1
ovi

=V 0
hence the function
L = 'UiAi — H + V,

whith V = V/(q), is such that

and in consequence
oL

ovt
Finally, eq. (3.23), fixes V up to a constant, and then we conclude that w has
the form

0= dq'.

L . 9’L .
= ———dqg' Ndv’ ——dq' N dg’, 3.25
Y= Bviowi v 0q'0q’ e a (3:25)
that will be denoted by wy. The function
0L
E,=H=v"— —L. 3.26
L v v ( )

is the hamiltonian of the second order vector field I', and the Newton’s equa-
tions defined by it take the Euler-Lagrange form

d oL AL
dt vt Ogi’

(3.27)

We also learn in this way that Euler-Lagrange equations (3.27) are intrinsic
and coordinate independent. d

Summarizing, we have found that looking for a Hamiltonian formulation
for Newton’s equations is equivalent to the existence of a function L called
the Lagrangian that as we will see in the next section is deeply related to the
calculus of variations (and it will give sense to the name of the theorem 1). We
can push forward the previous discussion and try to find out if the previous
conditions have implications on the possible forms of the Lagrangians arising
in the descriptions of Newton’s equations. This amounts to determine a priori
which kind of interactions can occur among the particles constituting a given
system. This question was raised and solved by Feynman (see [Wi50], [Dy90],
[Hu92] and [Ca95] for a recent review on the subject).
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3.1. THE GEOMETRY OF EULER-LAGRANGE EQUATIONS In the search
for ideas helping us to solve Newton’s equations we have arrived to a class
of Hamilton’s equations defined by means of a particular kind of symplectic
forms, the Cartan 2—forms derived from Lagrangian functions (3.25). These
forms possess the property of being exact (as the canonical symplectic struc-
ture on 7*Q). Then if wy, is a Cartan 2—form, there is a canonical symplectic
potential, called the Poincaré-Cartan 1-form, which is given by

oL .
= —dq". 3.28
Or 90t q ( )
It is obvious that w;, = —d©® . We can think of ©; as the result of the

action of the operator dq' 8/0v* on functions L. This operator is similar to
the action of the exterior differential d on functions on a manifold. In fact,
the exterior differential has associated a (1,1)-tensor I = dz* ® 9/9z" on the
manifold M and in the same sense the operator before defines a (1, 1)-tensor
on the manifold T'Q,

S

9 i
= 5,1 ® dq', (3.29)
which is a “twisted exterior differential” on T'Q). This tensor is natural and has
been called the vertical endomorphism of T'Q). The tensor field S is integrable
and ker S = ImS. Tts crucial role in the analysis of second order differential
equations has been pointed out by many people, J. Klein, M. Crampin, G.
Marmo, M. de Leén, etc. ([Cr83], [K162], [M090] ). In particular it has
been proved that the tensor field S together with a vector field A called the
Liouville vector field characterizes a tangent bundle (module some topological
conditions). The Liouville vector field is the generator of dilations along the
fibres of the tangent bundle TQ and is locally written as A = v*d/dv".

Using the tensor S the geometry of Euler-Lagrange equations (3.27) be-
comes apparent. Multiplying them by dq* we get,

Aot (iaL B GL)
dt vt Oqt

and using that d/dt(dq') = dv' we obtain,

d [, 0L
dt (dq ovt

7

) —dL =0.
Then, because

O, =dLoS, (3.30)
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we get as in the proof of Thm. 1,
LrOp =dL, (3.31)

which is the intrinsic form of Euler-Lagrange equations. If I is a SODE, then
S(T') = A and developing the Lie derivative in (3.31) we get

ird@L - d(L - ir@L),

and because ir®; = A(L), we get the Lagrangian version of the dynamical
equation (2.16),
’I:F(JJL = dEL

It is obvious from what it has been said that if wy is nondegenerate, I'
is a second order differential equation whose solutions satisfy Euler-Lagrange
equations of motion. Most of the previous construction can be generalized to
higher order Lagrangian dynamical systems as in [Le85].

We must remark here that w; can be degenerate. Lagrangians such that
wy, is not symplectic are called singular!®. They are commonplace in physi-
cal theories [Ha73], [Di64] and their analysis introduces a whole new field of
research in the modeling of physical systems, its main characteristic is the
nonexistence a priori of a dynamical characterization of the evolution of the
system (i.e., generically there is no initial value problem because they lead to
implicit differential equations) [Ca90], [Ca86]. The analysis of such systems
involve the introduction of different algorithms to construct a well-posed evo-
lution system. Such algorithms usually consist in the recursive construction
of a family of submanifolds on which the system has a better behaviour and
eventually they define a submanifold where the system has a genuine evo-
lution description. These submanifolds are defined by constraint functions!!
that have to be carefully analyzed [Go80], [Ma83], [He92], [Tu95].

Further research in the geometrical description of Euler-Lagrange equa-
tions has led to the important observation that there exists a unique nonlin- -
ear connection V associated to any SODE I' [Cr83]. We shall recall that if
Ly denotes the kinetic energy Lagrangian function defined by a Riemannian
metric g on @,

Ly = Egijvivj,

0The inverse problem for some systems of equations arising from singular Lagrangians
has been discussed in [Ib91].

" These constraints arise from compatibility conditions on the dynamical content of the
theory and they have not to be mistaken with the study of mechanical systems with holo-
nomic or nonholonomic constraints imposed externally.
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then, the corresponding Euler-Lagrange’s equations define the geodesic spray
of g which is the SODE,

0
aqt

o0
- Ffjv v -8—'17’ (332)

F(]:'Uz

where T'}; are the Christoffel symbols of the Levi-Civita connection defined
by g. In this particular case the connection associated to I'y is nothing else but
the linear Levi-Civita connection of the metric g. It was Crampin’s remark
that not only the SODE’s of the form (3.32) define connections but any SODE
defines a (nonlinear) connection [Cr95]. In the same way as the Levi-Civita
connection has been used to investigate Riemannian geometry Crampin’s non-
linear connection is being used to investigate the properties of SODE’s [CMI].

4. THE AcCTION FUNCTIONAL AND HAMILTON’S PRINCIPLE

We turn now our attention to the alternative viewpoint scketched in §1
regarding the geometrization programme for dynamical systems. Instead of
modeling the initial conditions of the system we will try to model the space
of trajectories. To show how we can do that, we will start with the simplest
possible situation. We will consider the first order differential equation defined
on the parameter space M given by,

it = fi(z,t). (4.33)

We want to characterize its integral curves with some prescribed properties,
for instance, we will impose that they will start at the point z, at time ¢, and
end at z; at time ¢; (> to). We will define the path space Q(zo,z1; M) as
the space of C* curves'? v: [ty,t;] = M such that y(ty) = zo and y(t,) = ;.
The curves v such that for each ¢ they satisfy eq. (4.33) form a subspace of
Q(zg,z1; M). In fact, defining ®¢ as the family of functions on Q(zo,z1; M),
i=1,...,n,t€ [to, t;] by

Pi(y) =4'(t) — fi(v(1), 1),

then, the curves we are looking for are precisely the set Niety,, @7 (0). We
can describe this set using a variational principle, i.e., as the critical set of
a function defined in Q(zo,z;; M). To achieve this in the simplest possible

“

2For analytical reasons it is convenient sometimes to use piecewise C'-differentiable
curves or even better curves of Sobolev class 1.
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way we introduce Lagrange multipliers &;(¢) and define the functional S on
the space of paths Q(zy,z,; M) as,

s = [ 60 (0 - 10, 0) . (4.34

It is obvious that the Lagrange multipliers ¢; must transform as covectors
in M in order to define a scalar inside the integral in (4.34). Moreover they
can vary in an arbitrary way as functions of ¢, then, the previous functional is
actually defined in the space of curves on T*M with endpoints lying over z,
and z; respectively, i.e.,

Qzo,21;T"M) =
{o: [to,t1] = T"M | o(t) = (x(t),£(t)), z(to) = To,x(t) =21 },

and

S@) = [ 6 @0 - £0,9) de.

In fact, the critical points of S are not exactly the solutions of eq. (4.33) as
expected but they contain more (geometrical) information. Computing 65(o)
we obtain:

35(0) = [ 6 - (o), 0) + (0) ~ £, 0)360)] d

= [ [0 5550 - 60 25 01,0920 + 640) — 5 @lo),0) s60)|

- [ [(_éi(t) - fj(t)%;(x(t),t)) 5o (t) + (4°(t) — fi(m(t),t))agi(t)] dt.

to

and then, the critical points of S are given by the solutions of the system of
ODE’s

i pi s 0f
T = f (ill, t)7 §i - ——a?gja (435)
with boundary conditions z(ty) = zo, z(¢;) = z; and &(t), &(¢1) free.

We must point out that the set of solutions of eq. (4.35) is mapped onto
the set of solutions of eq. (4.33). This map is defined simply by taking the z-
component of the solutions (z(t),£(t)) of (4.35). It is in this sense that we have
reformulated the problem (4.33) with boundary conditions as a variational
problem.
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An important observation is that the set of equations (4.35) are actually
Hamilton’s equations on T*M for a (time dependent) Hamiltonian which is
linear on the momenta §£’s,

Hf(ma é) = fifi(m7t)'

It is also remarkable that the functional S is built using the symplectic geom-
etry of T*M. In fact, we can rewrite S as

t1 . t1
S= [ (&i —&fi)dt = / O — Hydt,
to to
where Oy = £;dz* is the canonical Liouville 1-form on T*M. The vector field
on T*M defined by eqs. (4.35) is the cotangent lifting X™* of the vector field
X = f'9/0z* on M. Obviously we can replace H; by an arbitrary Hamiltonian
function on T*M and the functional S before by the action functional

S(o) = / O — tt’ H(o(t), t)dt. (4.36)

Then we can state:

THEOREM 2. (Hamilton’s principle) The integral curves of Hamilton’s
equations (2.15) with endpoints ©, and x; are the critical points of the ac-
tion functional (4.36) on the space of paths Q(zg,z,;T*M). Moreover, the
periodic solutions of Hamilton’s equations are the critical points of the action
functional on the loop space of T*M.

This main result constitute Hamilton’s principle and provides the direct
link between the initial value geometry and global modeling of dynamical
systems. All classical textbooks on Mechanics include a detailed description
of variational principles [G150], [Su74] (see [Yo68] for a historical account of
Hamilton’s principle).

4.1. LEGENDRE TRANSFORMATION As we discussed in §3 there is a par-
ticularly meaningful set of Hamilton’s equations, the so called SODEs obtained
from a regular Lagrangian function. A similar analysis as the one carried out
in the previous subsection leading to Hamilton’s principle, Theor. 2, can be
repeated to show that the solutions to the SODE’s equations

(1

it =i o = fi(z,v), | (4.37)
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with Lagrangian L are the critical points of the action functional
131
S, (o) = / o,— [ Eudt, (4.38)
4 to

on the space of paths Q(z¢,z;; TM). An straightforward analysis shows that
the critical points of the functional Sy in (4.38) are given by solutions of the
equations

0*L C 0*L ., 9L ., OL

—— (v —3*) =0; ——70' it = ——.

0%t 0% ovivl ovixi ox?

Thus, if L is regular, we get v = z* and the Euler-Lagrange equations follows.
Then we can restrict our attention to curves satisfying the second order con-
dition v* = ¢, i.e., to curves on M lifted naturally to M. Then, the action
functional S}, becomes

ty

Su(v) = | L{(t),7(t), t)dt,
0
which is the well-known action functional of Lagrangian mechanics [La60],
[Ge63], [Ar76]. It is in this form that the action functional is generalized to
field theories even though its geometrical content is partially lost.

It is noticeable that if we fix the energy of the system E; = ¢, which is a
constant of the motion for time—independent systems, we can restrict the space
of paths to those contained in the level set of energy c. Then, the variational
principle will become Maupertuis principle

Sp(o) = /a@“

The previous ideas can be thought as the translation to the velocity phase
space T'M of the results in the phase space T*M using the identification
p; = OL/Ov'. This map is called the Legendre transformation and will be
denoted by Fj,. If the Legendre transformation is a diffeomorphisms it allows
to use both descriptions, Lagrangian and Hamiltonian, for a given Lagrangian
dynamical system. Lagrangian functions such that this happens are called
hyperregular. If the Lagrangian L is regular it is easy to see that F is a
local diffeomorphism!3. In general it is not hard to see that Fjwy, = wy, and
F;©¢ = 0Oy, and (locally) F,,I' = Xy with B, = F;H.

13The Legendre transformation can also be defined starting from the Hamiltonian for-
malism as v' = 0H/0p; and gives rise to the same kind of considerations as the Legendre
transformation .
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4.2. DIRECT METHODS Once we have obtained a variational character-
ization of solutions of Hamilton’s equations one can get the wrong impression
that it will be straigtforward to compute them because they are simply the
critical points of a smooth function. In fact this idea has been pursued many
times in the last two hundred years and even if the way is paved with extreme
difficulties, there has been big successes. Nowadays this is a intensive field of
research that keeps providing wonderful surprises.

We will just mention some of the main ideas involved in the direct analysis
of the critical points of the action functional.

- Morse theory. It was envisioned by M. Morse as a way of proving the
existence of periodic geodesics in compact Riemannian manifolds. The main
idea of the theory consists in linking the critical points to the topology of the
underlying manifold. This idea turns to be extremely deep and succesful and
it leads naturally to a remarkable set of inequalities called Morse inequalities
[Mo65], [Mi69].

- Liusternik-Schnirelmann theory. Similar to Morse theory, it uses a topo-
logical invariant of a manifold, called the category of the manifold, to obtain
information on the existence of critical points of functions on it [Li66].

- Minimax techniques. A very deep idea introduced by Birkhoff to char-
acterize the eigenvalues of a quadratic form. It provides extremely powerful
tools to prove the existence of critical values of a function (see the recent book
[Wi89] and references therein).

- Floer’s theory. A modern refinement of Morse theory used by A. Floer
to prove the existence of periodic orbits of Hamilton’s equations on compact
symplectic manifolds. It was inspired by ideas coming from S. Smale, J. Mil-
nor, and E. Witten [FI89] and was used to partially prove a conjecture by V.
Arnold on the minimun number of periodic orbits of Hamiltonian systems on
compact symplectic manifolds.

5. INVARIANCE IN DYNAMICS. CONSTANTS OF THE MOTION AND
REDUCTION

We will finish this overview of some of the main ideas entering the geomet-
rical modeling of dynamics by sketching the use of symmetries to investigate
properties and solutions of differential equations.

It is intuitive clear that the existence of symmetries of dynamical systems
must be helpful to understand its solutions, this idea comes at least from S.
Lie [Li88]. What it is not clear at all is why symmetries-gives rise to numerical
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invariants. We will see immediately that the energy paradigm provides the
link between numerical invariants (or constants of the motion) and symmetries
of dynamical systems.

Noether’s theorem
[SYMMETRIES | = | CONSTANTS OF THE MOTION |
Energy paradigm

Symmetries versus constants of the motion

Let X be a vector field on a manifold P modeling a dynamical system.
A symmetry of the system is a transformation ¢: P — P leaving invariant
X, ie., ¢,X = X o ¢, or in other words, if 1); denotes the flow of X then
Py0¢ = ¢porh,, and ¢ sends solutions of X into solutions of X. Infinitesimally,
a symmetry of X is a vector field Y such that [X,Y] = 0. The flow ¢, of Y is
made of symmetries of X, ¢, o1, = 1), o ;.

On the other hand a numerical invariant of the dynamical system X is
a function F defined on P such that is constant along the evolution of the
system, i.e., F' o1, = F. This is equivalent to X (F) = 0.

If we restrict our attention to dynamical systems for which the energy
paradigm applies, we can assume that our manifold P has a Poisson bracket
and X is a Hamiltonian vector field with Hamiltonian H. If we have a trans-
formation ¢ of the theory and we ask it to respect the energy paradigm, this
implies that it must send any Hamiltonian vector field into another Hamil-
tonian vector field. Transformations satisfying this property have not been
characterized for general Poisson manifolds. For nondegenerate Poisson struc-
tures, it is the content of Lee-Hwa-Chung theorem that such transformations
must be conformal symplectic [Le47],[Go84], [L188].

We will assume in what follows that the symmetry transformations we
are considering are Poisson, and that their infinitesimal generators will be
represented by Hamiltonian vector fields. Even if this is not the most general
situation is relevant enough in the sense that most of the known applications
fall within these hypothesis. Then, we can summarize the previous discussion
stating that in what follows by an infinitesimal symmetry of the dynamical
system X we will mean a Hamiltonian vector field Y = X such that X (F') =
0.

THEOREM 3. (Noether’s theorem [No71]) '* There is a one-to-one corre-

14Usually for historical reasons, Noether’s theorem is established in the Lagrangian setting.
It is an straigthforward exercise to translate this theorem to the geometrical setting described
in §3.
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spondence among infinitesimal symmetrie and constants of the motion of the
Hamiltonian vector field X .

The proof of Noether’s theorem is a straigthforward consequence of the
following identities and simply reflects the skewsymmetry of {,-},

Y(H) = Xp(H) = {F,H} = —{H,F} = —Xy(F),

thus the Lh.s. of the previous equation is zero iff the r.h.s. vanishes, but this
is equivalent to F' being a constant of the motion and the former condition is
equivalent to Y being an infinitesimal symmetry of the system. |

We can go further and ask about the set of all symmetries of Xy. It is
easy to check that they form a Lie algebra. Computing [[Y1, Y|, Xg] and using
Jacobi’s identity.

(Y1, Ya], Xu] = —[[Yo, X&], V1] + [[Y1, X&), Y2] =0.

5.1. THE MOMENTUM MAP This Lie algebra of infinitesimal symmetries
can be finite or infinite dimensional. Suppose either that it is finite dimensional
or that we are just interested in a finite dimensional subalgebra of it. Let us
denote it by g and let Y;, ¢ = 1,... ;7 be a set of generators of g. As before
we will assume that the symmetry generators Y; are Hamiltonian vector fields
X, for some constants of the motion J;. Combining together this constants
of the motion we construct a map J = (Jy,...,J,) that can be described
intrinsically in a better way as a map J: P — g*,

(J(m),Y;) = Ji(m); Yme P, Vi=1,...,r.

The map J is called the momentum map of the symmetry algebra g acting on
the Poisson manifold P, and it indeed generalizes the notion of angular mo-
mentum and linear momentum in mechanical systems [So70], [Ar76], [AbT78],
[Ma85], [Mr94].

As it was pointed out in the beginning of this section that the existence
of symmetries can help us in solving the problem under consideration. The
momentum map J indicates how to do that. Note that the momentum map is
a constant of the motion, thus if we take a trajectory of our dynamical system
with initial data m, it always remains in the level set of the value y = J(m).
On the other hand on the level set J=!(u), there is still a residual symmetry of
g. In fact, notice that the commutation relations Ady,(Y;) = [V;,Y;] = CLY;
induce an action of g on g* called the coadjoint action and defined by

Ady, 0 = —CL0°,
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Figure 2. Symplectic reduction by a level set of the momentum map.

where 67 denotes the dual basis of Y; on g*, i.e., (#7,Y;) = 67. Then there is
a subalgebra g, leaving invariant y that consists of the elements Y € g such
that Ad},u = 0. This algebra is called the isotropy algebra of p and under
rather general conditions it leaves invariant the level set u of the momentum
map.

To be more specific, we can rephrase the previous discussion as follows.
There is a unique connected and simply connected Lie group G possessing g
as a Lie algebra. The group G will act in a natural way on P and it also has a
natural action on g* by the coadjoint action. If the second cohomology group -
of G is trivial then the momentum map J is equivariant with respect to both
actions, i.e.,

J(g-m) = Ad;J(m); Vg € G,m € P.

The same is true if G is compact (a general discussion about this can be found
in [Mr94] and references therein). The other crucial property of J is that
under the conditions above, J is a Poisson map with respect to the canonical
linear Poisson structure existing on g* which is precisely the linear Poisson
structure defined by eq. (2.11).

Denoting by G, the subgroup of G' whose Lie algebra is g, we have that
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Xy, which is contained in J~!(u), is invariant under G, and thus it projects
to the quotient space P, = J~!(u)/G,, called the Marsden-Weinstein reduced
phase space which will be assumed to be a smooth manifold and the canonical
projection J~!(u) — P, a submersion (see figure 2.).

THEOREM 4. (Symplectic reduction theorem [Mr74]) Under the condi-
tions above'®, the reduced phase space is a Poisson manifold and the Hamil-
tonian vector Xy induces a vector field on the reduced phase space which is
also Hamiltonian.

For simplectic manifolds, it is not hard to prove that the restriction of w
to the level set J~!(u) is degenerate and its kernel is spanned at each point by
the tangent vectors along the orbits of G,. Thus, this form projects to P, and

“the projection is nondegenerate and closed, hence symplectic. On the other
hand the projected vector field induced by Xy is obviously hamiltonian with
respect to the projected symplectic form. O

Examples of this are abondant and a vast literature has been devoted to
explore and discuss its implications'® and applications like relative equilibrium
and stability, plasma and fluid dynamics, etc. [Mr94].
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