Tauberian Operators on Spaces of Integrable Functions†

MANUEL GONZÁLEZ AND ANTONIO MARTÍNEZ-ABEJÓN

Dpto. Matemáticas, Fac. Ciencias, Univ. Cantabria, 39071-Santander, Spain
Dpto. Matemáticas, Fac. Ciencias, Univ. Oviedo, 33071-Oviedo, Spain

AMS Subject Class. (1991): 46B20, 47A55

Received December 4, 1995

We study tauberian operators from $L_1(\mu)$ into a Banach space Y, where μ is a non-purely atomic, finite measure. In the case in which μ is a purely atomic measure, our results are also valid but trivial, because in this case $L_1(\mu)$ has the Schur property: weakly convergent sequences are convergent.

In Section 1, we characterize the tauberian operators $T : L_1(\mu) \rightarrow Y$ as those operators T such that $\lim \inf_n \|Tf_n\| > 0$ for every disjoint normalized sequence (f_n) in $L_1(\mu)$; or equivalently, the kernel $N(T^{**})$ of the second conjugate of T coincides with $N(T)$. We show that the class of all tauberian operators from $L_1(\mu)$ into Y is open in the class of all operators, and we give several examples of tauberian operators $T : L_1(\mu) \rightarrow Y$. As a consequence, we prove that $L_1(\mu)$ is contained isomorphically in every quotient of $L_1(\mu)$ by any of its reflexive subspaces.

In Section 2, we show that if an operator $T : L_1(\mu) \rightarrow Y$ is tauberian, then it is supertaubernian (the ultrapowers T_μ of T are tauberian operators) and its second conjugate T^{**} is also tauberian. Moreover we characterize T tauberian in terms of the kernel $N(T_\mu)$ of any of its non-trivial ultrapowers.

Section 3 is devoted to the action of tauberian operators on the dyadic tree of $L_1[0,1]$. We prove that an operator $T : L_1[0,1] \rightarrow Y$ is tauberian if and only if for every sequence (f_n) contained in the dyadic tree on $L_1[0,1]$ and equivalent to the unit vector basis of ℓ_1, the sequence (Tf_n) is also equivalent to the unit vector basis of ℓ_1 up to a finite quantity of elements.

In Section 4 we study the admissible perturbations for tauberian operators on $L_1(\mu)$. It is known that the class of tauberian operators is stable under perturbation by weakly compact operators. We identify the perturbation class

†Supported in part by DGICYT Grant PB 94–1052 (Spain).
with the class of weakly precompact operators, by showing that an operator $K : L_1(\mu) \to Y$ is weakly precompact if and only if $T + K$ is tauberian for every tauberian operator $T : L_1(\mu) \to Y$.

We use standard notations: X and Y are Banach spaces, B_X the closed unit ball of X, S_X the unit sphere of X, $\mathcal{B}(X,Y)$ the class of bounded linear operators from X into Y, X^* the dual of X, $T^* : Y^* \to X^*$ the conjugate operator of $T \in \mathcal{B}(X,Y)$, and $R(T)$ and $N(T)$ the range and kernel of T. We identify X with a subspace of X^{**}. We denote the positive integers by \mathbb{N}, and the real numbers by \mathbb{R}.

1. Disjoint Sequences in $L_1(\mu)$

Let (Ω, Σ, μ) be a non-purely atomic finite measure space. We call $A \in \Sigma$ non-purely atomic if A is not a union of atoms.

Definition 1. ([7]) An operator $T \in \mathcal{B}(X,Y)$ is tauberian if $T^{**}^{-1}(Y) \subset X$; equivalently [7, Th. 3.2], if any bounded sequence $(x_n) \subset X$ admits a weakly convergent subsequence (x_{n_k}) whenever (Tx_n) is weakly convergent.

We denote the class of all tauberian operators from X into Y by $\mathcal{T}(X,Y)$. Next we give the main result of this section.

Theorem 2. For $T \in \mathcal{B}(L_1(\mu), Y)$, the following statements are equivalent:

1. T is tauberian;
2. $N(T) = N(T^{**})$;
3. $\lim \inf_n \|Tf_n\| > 0$ for every normalized disjoint sequence (f_n) in $L_1(\mu)$;
4. there exists $r > 0$ such that $\lim \inf_n \|Tf_n\| > r$ for every normalized disjoint sequence (f_n) in $L_1(\mu)$.

Corollary 3. The class $\mathcal{T}(L_1(\mu), Y)$ is open in $\mathcal{B}(L_1(\mu), Y)$.

Note that the class $\mathcal{T}(X,Y)$ is not open in general [1], [12]. Now we present some examples of tauberian operators on $L_1(\mu)$.

Examples. a) If R is a reflexive subspace of $L_1(\mu)$, the quotient operator $Q : L_1(\mu) \to L_1(\mu)/R$ is tauberian. The space $L_1[0,1]$ contains a large list of reflexive subspaces. For instance, the closed space generated by the
Rademacher functions is isomorphic to ℓ_2 [9, Th. 2.6.3]. Also, it is known [10, Th. 2.2.5] that for $1 < r < 2$ there exists a closed subspace $M_r \subset L_1[0,1]$ isomorphic to $L_r[0,1]$. Note that none of those reflexive subspaces M_r contains the remaining M_p for $1 < p < 2$, because the type is hereditary by subspaces.

b) If $K \in B(X,Y)$ is weakly compact and $T \in B(X,Y)$ is tauberian, it is easy to check that $T + K$ is also tauberian.

c) Given a reflexive subspace $R \subset L_1(\mu)$, the distance from the quotient operator $Q : L_1(\mu) \to L_1(\mu)/R$ to the boundary of $T(L_1(\mu), L_1(\mu)/R)$ is equal to 1. Thus, if $S \in B(L_1(\mu), L_1(\mu)/R)$ and $\|S\| < 1$ then $Q + S$ is tauberian.

Given a measurable subset $C \subset \Omega$ with $\mu(C) > 0$, we denote by $L_1(C)$ the subspace of $L_1(\mu)$ which consists of all functions f such that $f = \chi_C f$. If C is non-purely atomic then $L_1(C)$ is isomorphic to $L_1(\mu)$.

Proposition 4. Let $T \in B(L_1(\mu), Y)$ be a tauberian operator. For every non-purely atomic measurable set $A \subset \Omega$ with $\mu(A) > 0$ there is a non-purely atomic subset $C \subset A$ with $\mu(C) > 0$ so that the restriction $T \big|_{L_1(C)}$ is an isomorphism.

Corollary 5. The class $T(L_1(\mu), Y)$ is non-empty if and only if Y contains a subspace isomorphic to $L_1(\mu)$. In particular, if M is a reflexive subspace of $L_1(\mu)$ then $L_1(\mu)/M$ contains a subspace isomorphic to $L_1(\mu)$.

2. Supertauberian operators

Tacon [12] introduced the class of supertauberian operators as a refinement of the class of tauberian operators. An operator $T \in B(X,Y)$ is said to be supertauberian if for every $0 < \varepsilon < 1$ there exists a positive integer $n \in \mathbb{N}$ for which there are not families $\{x_1, \ldots, x_n\} \subset S_X$, $\{f_1, \ldots, f_n\} \subset S_X$ verifying $f_k(x_m) > \varepsilon$ for $1 \leq k \leq m \leq n$, $f_k(x_m) = 0$ for $1 \leq m < k \leq n$ and $\|Tx_k\| < 1/k$ for $k = 1, \ldots, n$.

Supertauberian operators can be characterized in terms of ultrapowers of Banach spaces [4]. In order to be precise we need to introduce some notation.

An ultrafilter \mathcal{U} on an infinite set I is said to be *countably incomplete* if there is a countable partition $\{I_n : n \in \mathbb{N}\}$ of I verifying $I_n \notin \mathcal{U}$ for all $n \in \mathbb{N}$. Henceforth, \mathcal{U} will be a fixed countably incomplete ultrafilter on an infinite set I.
Consider the Banach space $\ell_\infty(I, X)$ which consists of all bounded families $(x_i)_{i \in I}$ in X endowed with the norm $\|x_i\|_\infty := \sup \{\|x_i\| : i \in I\}$. Let $N_\mu(X)$ be the closed subspace of all families $(x_i) \in \ell_\infty(I, X)$ which converge to 0 following \mathcal{U}. The ultrapower of X following \mathcal{U} is defined as the quotient

$$X_\mu := \frac{\ell_\infty(I, X)}{N_\mu(X)}.$$

The element of X_μ including the family $(x_i) \in \ell_\infty(I, X)$ as a representative is denoted by $[x_i]$. The ultrapower X_μ contains canonically an isometric copy of X generated by the constant families of $\ell_\infty(I, X)$. We identify this copy with X. An operator $T \in B(X, Y)$ has an extension $T_\mu \in B(X_\mu, Y_\mu)$ given by $T_\mu[x_i] = [Tx_i]$.

PROPOSITION 6. [4, Th. 9] An operator $T \in B(X, Y)$ is supertauherian if and only if T_μ is tauherian.

The ultrapower $L_1(\mu)_\mu$ was studied extensively by Heinrich [5]. For the convenience of the reader, we give a description of it.

Let $B(I, \Omega)$ be the set of all families $(x_i)_{i \in I}$ such that $x_i \in \Omega$. The ultrafilter \mathcal{U} induces an equivalence relation \sim on $B(I, \Omega)$ given by $(x_i)_{i \in I} \sim (y_i)_{i \in I}$ if $\{i \in I : x_i = y_i\} \in \mathcal{U}$. We write

$$\Omega^\mu := \frac{B(I, \Omega)}{\sim},$$

and $(x_i)^\mu$ denotes the element of Ω^μ whose representative is $(x_i)_{i \in I}$. If $\{A_i : i \in I\}$ is a family of subsets of Ω, we write $(A_i)^\mu := \{(x_i)^\mu : x_i \in A_i\}$. The Boolean algebra Σ_μ on Ω^μ, defined by $\Sigma_\mu := \{(A_i)^\mu : A_i \in \Sigma\}$, generates a σ-algebra Γ_μ. The measure μ induces a measure μ_μ on Γ_μ, univocally defined by its value on the elements $(A_i)^\mu \in \Sigma_\mu$, given by $\mu_\mu((A_i)^\mu) := \lim_\mu \mu(A_i)$.

There exists a measure space $(\Theta, \mathcal{T}, \nu)$ such that $L_1(\mu)_\mu \cong L_1(\mu_\mu) \oplus_1 L_1(\nu)$.

Recall that a Banach space X is superreflexive if every Banach space finitely representable in X is reflexive; equivalently, if any ultrapower X_μ is reflexive [5].

From a result of Rosenthal [11], it follows that all reflexive subspaces of $L_1(\mu)$ are superreflexive. Here we obtain this fact from the following result.

PROPOSITION 7. Let E be a subspace of $L_1(\mu)$. Then E is reflexive if and only if E_μ is contained in $L_1(\mu_\mu)$.
COROLLARY 8. An operator \(T \in \mathcal{B}(L_1(\mu), Y) \) is tauberian if and only if \(T \) is supertauberian. In this case, \(T^{(2^n)} \) is tauberian for all \(n \in \mathbb{N} \).

For \(T \in \mathcal{B}(L_1(\mu), Y) \), we give a better result.

PROPOSITION 9. An operator \(T \in \mathcal{B}(L_1(\mu), Y) \) is tauberian if and only if \(N(T_a) \subset L_1(\mu_a) \).

3. TAUBERIAN OPERATORS AND THE DYADIC TREE

In this section we characterize tauberian operators \(T : L_1[0,1] \rightarrow Y \) by its action over the dyadic tree of \(L_1[0,1] \). A tree in a Banach space \(Y \) is a bounded family

\[\{ y^n_k : n = 0, 1, 2, \ldots ; 1 \leq k \leq 2^n \} \subset Y \]

such that \(y^n_k = 2^{-1}(y^{n+1}_{2k-1} + y^{n+1}_{2k}) \) for all \(n \) and \(k \). An example is the so called dyadic tree on \(L_1[0,1] \), given by

\[\chi^n_k := 2^n \chi(\frac{k}{2^n}, \frac{k}{2^n}). \]

The intervals \((\frac{k-1}{2^n}, \frac{k}{2^n})\) are called dyadic. Any operator \(T \in \mathcal{B}(L_1[0,1], Y) \) determines a tree on \(Y \) given by \(y^n_k := T \chi^n_k \). Conversely, a tree \((y^n_k) \subset Y \) determines an operator in \(\mathcal{B}(L_1[0,1], Y) \). We refer to [2] for the details.

THEOREM 10. An operator \(T \in \mathcal{B}(L_1[0,1], Y) \) is tauberian if and only if for every sequence \((x_n) \) contained in the dyadic tree of \(L_1[0,1] \) and equivalent to the unit vector basis of \(\ell_1 \), there is a \(n_0 \in \mathbb{N} \) such that \((Tx_n)_{n \geq n_0} \) is equivalent to the unit vector basis of \(\ell_1 \).

4. THE PERTURBATION CLASS OF \(\mathcal{T}(L_1(\mu), Y) \)

For a Banach space \(\mathcal{A} \) and a subset \(S \subset \mathcal{A} \), Lebow and Schechter [8] define the perturbation class of \(S \) in \(\mathcal{A} \) as the set

\[P(S) := \{ a \in \mathcal{A} : a + s \in S \text{ for all } s \in S \}. \]

We say that \(C \subset \mathcal{A} \) is an admissible class for \(S \) if \(C \subset P(S) \). Here we study the perturbation class of \(\mathcal{T}(L_1(\mu), Y) \) in \(\mathcal{B}(L_1(\mu), Y) \).

For \(S = \mathcal{T}(X,Y) \), the class \(WC_0(X,Y) \) of all weakly compact operators from \(X \) into \(Y \) is an admissible class [12]. Moreover, a broader admissible class
for $T(X,Y)$ can be introduced as follows. An operator $T \in B(X,Y)$ is said to be R-strictly singular if for any operator L into X such that TL is tauberian, L is weakly compact [3]. The perturbation class $P(T(X,Y))$ is not well known in general. However, for $X = L_1(\mu)$, we find that $P(T(L_1(\mu),Y))$ coincides with the class $Ro(L_1(\mu),Y)$ of all weakly precompact operators. Recall that $T \in B(X,Y)$ is said to be a weakly precompact operator if for every bounded sequence $(x_n) \subset X$, (Tx_n) contains a weakly Cauchy subsequence.

Proposition 11. Let Y be a Banach space such that $T(L_1(\mu),Y) \neq \emptyset$. An operator $K \in B(L_1(\mu),Y)$ is weakly precompact if and only if for every $T \in T(L_1(\mu),Y)$, the operator $T + K$ is tauberian.

Herman [6] call an operator $T \in B(X,Y)$ almost weakly compact if given a closed subspace $H \subset X$ such that $T|_H$ is an isomorphism, one has that H is reflexive.

Proposition 12. For $T \in B(L_1(\mu),Y)$, the following statements are equivalent:

1. T is weakly precompact;
2. T is R-strictly singular;
3. T is almost weakly compact.

References

