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1. INTRODUCTION

The concept of uniform rotundity relative to a linear subspace was in-
troduced by H. Fakhoury [5] in order to establish continuity and uniqueness
properties of the best approximation projection. In this paper we investigate
the lifting of uniform rotundity relative to a linear subspace from a space X to
the corresponding Lebesgue-Bochner function spaces. The main result states
that, for 1 < p < 0o, the normed space X is uniformly rotund relative to its
linear subspace Y if and only if the Lebesgue-Bochner function space LP(X)
is uniformly rotund relative to L”(Y). The proof extends to Kothe normed
spaces of vector-valued functions and to Day’s substitution spaces. The ques-
tion of when Lebesgue-Bochner function spaces inherit properties of rotundity
was began in 1940 by Boas [1] and Day [4], who deal with the uniform rotund
case, and was continued in [8, 11, 6, 10], for various generalizations of the
uniform rotundity property.

Terminology and notations are standard. Let X be a normed space. As
usual, B and S denote the closed unit ball and the unit sphere of X respec-
tively.

The space X is said to be uniformly rotund relative to the linear subspace
Y of X when the relative modulus of rotundity o
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is positive for every 0 < ¢ < 2. Uniform rotundity relative to ¥ = X is

uniform rotundity in ClaI'ksonWOI‘m rotundity relative to a
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1-dimensional linear subspace Y =< z > is uniform rotundity in the direction
z (7, 12].

It is obvious that if X is uniformly rotund relative to Y, then X is uniformly
rotund in every direction of Y. Moreover, a compactness argument proves
that the two concepts coincide when Y is finite-dimensional. However, the
two notions are distinct.

2. FUNCTION SPACES

Let (T, %, 1) be a measure space, and let L?(X), 1 < p < oo (resp. p = o0),
be the Lebesgue-Bochner function space of p-equivalence classes of strongly
measurable functions z: T — X with [, ||z(¢)||” du < oo (resp. p-essentially
bounded), endowed with the norm

1/p
foll = | [ s da] , esp. lsll = esssup a(e).
T teT

When X = R, we denote LP(R) = L?.
The result that follows is an answer to the problem of whether relative
uniform rotundity lifts from X to L?(X).

THEOREM 1. Let Y be a linear subspace of the normed space X. Then,
for 1 < p < oo, L(X) is uniformly rotund relative to L?(Y') if and only if X
is uniformly rotund relative to Y.

Let F be the Kothe-Banach space of equivalence classes of p-measurable
functions ¢ from T into C such that if n : T — C is py-measurable, £ € E,
and |n| < |¢], then n € E and ||nllz < ||€]lp (condition (a)). Let X be a
normed space. The vector-valued Kéthe normed space E(X) is the space of
the equivalence classes of Bochner measurable functions z from 7" into X, such
that if £(t) = ||z(t)||z, then & € E (condition (b)). Let Ty be a y—measurable
subset of T, and set

Ey={¢€E:{=0inT,} .

Since the proof of Theorem 1 only uses conditions (a) and (b), the proof carries
over for E(X). Thus we have also stated the following result:

THEOREM 2. Let Y be a linear subspace of X. The vector valued Kéthe
normed space E(X) is uniformly rotund relative to Ey(Y') if and only if E is
uniformly rotund relative to By and X is uniformly rotund relative to Y.
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Let (7,3, 1) be a o-finite measure space which contains no atoms, and let
either F = L' or E = L*. Since E is no uniformly rotund relative to any
Ey (see [9]), L'(X) (resp. L*(X)) is never uniformly rotund relative to any
Ly(Y) (resp. Lg°(Y)).

3. SEQUENCE SPACES

Let I be an index set. A full function space [3, p. 35] is a normed space E
of real or complex functions ¢ on I such that (condition (a)) for each £ € E,
every function n for which |n(z)| < |€(i)] for all © € I satisfies n € E and
Inlle < ||€]lg. If a normed space (X, || - ||;) is given for each 7 € I, let Pp X,
the substitution space of the X; in E, be the space of all those functions z
on I such that (condition (b)) z; € X; for all i € I, and if £(z) = ||z;]|; for
all 7 € I, then £ € E. The space PpX; is normed by ||z| = ||£||g, where
& = (&) = (||lz:ll;). We shall say that the X; have a relative-to-Y; common
modulus of rotundity if inf,c; (Y5, €) is strictly positive for every 0 < e < 2.

In order to include the posibility that ¥; may be the trivial space {0},
define I, be the set of 7 € I for which Y; = {0}, and let Ey be the full function
subspace of E defined by

Eo={(&) e FE : & =0, for every i € Io}.

Again, since the proof of Theorem 1 depends only on conditions (a) and (b),
it can be restated in the following terms for substitution spaces.

THEOREM 3. The space PrX; is uniformly rotund relative to Pg,Y; if and
only if E is uniformly rotund relative to Ey and the X; have a relative-to-Y;
common modulus of rotundity.

Let 7, 1 < p < oo (resp. p = o0), be the Banach space of real-valued
functions & = (&;)ie; whose pth power is absolutely summable on I, with
norm defined by [|€]]» = (3,¢; €:]17)"/7 (vesp. which are bounded, with norm
sup,cy |€:]). For every Iy C I, set

0={Eer: & =0, forevery i € Ip}.

If X is a normed space, let us denote ¢7(X) by P (X) the substitution
space formed by setting ' = ¢7, and X; = X for every ¢« € I. Similarly, if Y
is a linear subspace of X and Iy C I, let us denote £5(Y) by P (Y).

Then, as a consequence of Theorem 3, we have the following result.
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COROLLARY 4. Let X be a normed space and Y a linear subspace of X.

Then

(i) If 1 < p < 00, X is uniformly rotund relative to Y if and only if ¢7(X)

is uniformly rotund relative to ¢*(Y').

(i) IfI, =T\ {3} for some i € I, X is uniformly rotund relative to Y if and

only if £*(X) is uniformly rotund relative to £3(Y). Otherwise £*(X) is
no uniformly rotund relative to £3(Y).

(iii) For every Iy C I, £*°(X) is never uniformly rotund relative to £5°(Y).
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