Relative Rotundity in $L^p(X)^\dagger$

Manuel Fernández and Isidro Palacios

Dpto. de Matemáticas, Univ. de Extremadura, 06071-Badajoz, Spain

(Presented by Jesús M.F. Castillo)

AMS Subject Class. (1991): 46B20, 46B25

Received June 9, 1995

1. Introduction

The concept of uniform rotundity relative to a linear subspace was introduced by H. Fakhoury [5] in order to establish continuity and uniqueness properties of the best approximation projection. In this paper we investigate the lifting of uniform rotundity relative to a linear subspace from a space X to the corresponding Lebesgue–Bochner function spaces. The main result states that, for 1 , the normed space <math>X is uniformly rotund relative to its linear subspace Y if and only if the Lebesgue–Bochner function space $L^p(X)$ is uniformly rotund relative to $L^p(Y)$. The proof extends to Köthe normed spaces of vector-valued functions and to Day's substitution spaces. The question of when Lebesgue–Bochner function spaces inherit properties of rotundity was began in 1940 by Boas [1] and Day [4], who deal with the uniform rotund case, and was continued in [8, 11, 6, 10], for various generalizations of the uniform rotundity property.

Terminology and notations are standard. Let X be a normed space. As usual, B and S denote the closed unit ball and the unit sphere of X respectively.

The space X is said to be uniformly rotund relative to the linear subspace Y of X when the relative modulus of rotundity

$$\delta(Y,\epsilon) := \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x,y \in S, x-y \in Y, \|x-y\| \geq \epsilon \right\}$$

is positive for every $0 < \epsilon \le 2$. Uniform rotundity relative to Y = X is uniform rotundity in Clarkson's sense [2], and uniform rotundity relative to a

[†]A full version will appear in Arch. Math. (Basel)

1-dimensional linear subspace $Y = \langle z \rangle$ is uniform rotundity in the direction z [7, 12].

It is obvious that if X is uniformly rotund relative to Y, then X is uniformly rotund in every direction of Y. Moreover, a compactness argument proves that the two concepts coincide when Y is finite-dimensional. However, the two notions are distinct.

2. Function Spaces

Let (T, Σ, μ) be a measure space, and let $L^p(X)$, $1 \le p < \infty$ (resp. $p = \infty$), be the Lebesgue–Bochner function space of μ -equivalence classes of strongly measurable functions $x \colon T \to X$ with $\int_T \|x(t)\|^p d\mu < \infty$ (resp. μ -essentially bounded), endowed with the norm

$$||x|| = \left[\int_T ||x(t)||^p d\mu \right]^{1/p}, \quad (\text{resp. } ||x|| = \underset{t \in T}{\operatorname{ess \, sup}} \, ||x(t)||).$$

When $X = \mathbb{R}$, we denote $L^p(\mathbb{R}) = L^p$.

The result that follows is an answer to the problem of whether relative uniform rotundity lifts from X to $L^p(X)$.

THEOREM 1. Let Y be a linear subspace of the normed space X. Then, for $1 , <math>L^p(X)$ is uniformly rotund relative to $L^p(Y)$ if and only if X is uniformly rotund relative to Y.

Let E be the Köthe-Banach space of equivalence classes of μ -measurable functions ξ from T into $\mathbb C$ such that if $\eta:T\to\mathbb C$ is μ -measurable, $\xi\in E$, and $|\eta|\leq |\xi|$, then $\eta\in E$ and $\|\eta\|_E\leq \|\xi\|_E$ (condition (a)). Let X be a normed space. The vector-valued Köthe normed space E(X) is the space of the equivalence classes of Bochner measurable functions x from T into X, such that if $\xi(t)=\|x(t)\|_E$, then $\xi\in E$ (condition (b)). Let T_0 be a μ -measurable subset of T, and set

$$E_0 = \{ \xi \in E : \xi = 0 \text{ in } T_0 \}$$
.

Since the proof of Theorem 1 only uses conditions (a) and (b), the proof carries over for E(X). Thus we have also stated the following result:

THEOREM 2. Let Y be a linear subspace of X. The vector valued Köthe normed space E(X) is uniformly rotund relative to $E_0(Y)$ if and only if E is uniformly rotund relative to E_0 and X is uniformly rotund relative to Y.

Let (T, Σ, μ) be a σ -finite measure space which contains no atoms, and let either $E = L^1$ or $E = L^{\infty}$. Since E is no uniformly rotund relative to any E_0 (see [9]), $L^1(X)$ (resp. $L^{\infty}(X)$) is never uniformly rotund relative to any $L_0^1(Y)$ (resp. $L_0^{\infty}(Y)$).

3. SEQUENCE SPACES

Let I be an index set. A full function space [3, p. 35] is a normed space E of real or complex functions ξ on I such that (condition (a)) for each $\xi \in E$, every function η for which $|\eta(i)| \leq |\xi(i)|$ for all $i \in I$ satisfies $\eta \in E$ and $\|\eta\|_E \leq \|\xi\|_E$. If a normed space $(X_i, \|\cdot\|_i)$ is given for each $i \in I$, let $\mathcal{P}_E X_i$, the substitution space of the X_i in E, be the space of all those functions x on I such that (condition (b)) $x_i \in X_i$ for all $i \in I$, and if $\xi(i) = \|x_i\|_i$ for all $i \in I$, then $\xi \in E$. The space $\mathcal{P}_E X_i$ is normed by $\|x\| = \|\xi\|_E$, where $\xi = (\xi_i) = (\|x_i\|_i)$. We shall say that the X_i have a relative-to- Y_i common modulus of rotundity if $\inf_{i \in I} \delta(Y_i, \epsilon)$ is strictly positive for every $0 < \epsilon \leq 2$.

In order to include the posibility that Y_i may be the trivial space $\{0\}$, define I_0 be the set of $i \in I$ for which $Y_i = \{0\}$, and let E_0 be the full function subspace of E defined by

$$E_0 = \{(\xi_i) \in E : \xi_i = 0, \text{ for every } i \in I_0\}.$$

Again, since the proof of Theorem 1 depends only on conditions (a) and (b), it can be restated in the following terms for substitution spaces.

THEOREM 3. The space $\mathcal{P}_E X_i$ is uniformly rotund relative to $\mathcal{P}_{E_0} Y_i$ if and only if E is uniformly rotund relative to E_0 and the X_i have a relative-to- Y_i common modulus of rotundity.

Let ℓ^p , $1 \leq p < \infty$ (resp. $p = \infty$), be the Banach space of real-valued functions $\xi = (\xi_i)_{i \in I}$ whose pth power is absolutely summable on I, with norm defined by $\|\xi\|_{\ell^p} = (\sum_{i \in I} \|\xi_i\|^p)^{1/p}$ (resp. which are bounded, with norm $\sup_{i \in I} |\xi_i|$). For every $I_0 \subset I$, set

$$\ell_0^p = \{ \xi \in \ell^p : \xi_i = 0, \text{ for every } i \in I_0 \}.$$

If X is a normed space, let us denote $\ell^p(X)$ by $\mathcal{P}_{\ell^p}(X)$ the substitution space formed by setting $E = \ell^p$, and $X_i = X$ for every $i \in I$. Similarly, if Y is a linear subspace of X and $I_0 \subset I$, let us denote $\ell^p_0(Y)$ by $\mathcal{P}_{\ell^p_i}(Y)$.

Then, as a consequence of Theorem 3, we have the following result.

COROLLARY 4. Let X be a normed space and Y a linear subspace of X. Then

- (i) If $1 , X is uniformly rotund relative to Y if and only if <math>\ell^p(X)$ is uniformly rotund relative to $\ell^p(Y)$.
- (ii) If $I_0 = I \setminus \{i\}$ for some $i \in I$, X is uniformly rotund relative to Y if and only if $\ell^1(X)$ is uniformly rotund relative to $\ell^1_0(Y)$. Otherwise $\ell^1(X)$ is no uniformly rotund relative to $\ell^1_0(Y)$.
- (iii) For every $I_0 \subset I$, $\ell^{\infty}(X)$ is never uniformly rotund relative to $\ell_0^{\infty}(Y)$.

References

- [1] Boas, R.P., Some uniformly convex spaces, *Bull. Amer. Math. Soc.*, **46** (1940), 304-311.
- [2] CLARKSON, J.A., Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414.
- [3] DAY, M.M., "Normed Linear Spaces", 3rd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [4] DAY, M.M., Some more uniformly convex spaces, Bull. Amer. Math. Soc., 47 (1941), 504-507.
- [5] FAKHOURY, H., Directions d'uniforme convexité dans un espace normé, Séminaire Choquet, 14 anné, n. 6 (1974).
- [6] EMMANUELE, G., VILLANI, A., Lifting of rotundity properties from E to $L^p(\mu, E)$, Rocky Mountain J. Math., 17 (3) (1987), 617–627.
- [7] Garkavi, A.L., On the Čebysev center of a set in a normed space, Investigations of contemporary problems in the constructive theory of functions, Moscow, 1961, 328–331.
- [8] McShane, E.J., Linear functionals on certain Banach spaces, *Proc. Amer. Math. Soc.*, 1 (1950), 402–408.
- [9] Phelps, R.R., Uniqueness of Hahn-Banach extensions and unique best approximation, *Trans. Amer. Math. Soc.*, **95** (1960), 238-255.
- [10] SMITH, M.A., Rotundity and extremity in $\ell^p(X_i)$ and $L^p(\mu, X)$, Contemp. Math., Vol. **52** (1986), 143–162.
- [11] SMITH, M.A., TURRET, B., Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc., 257 (1) (1980), 105-118.
- [12] Zizler, V., On some rotundity and smoothness properties in Banach spaces, Dissertationes Math., 87 (1971), 1-37.