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INTRODUCTION

A class of bounded linear operators which presents a considerable spectral
theory is that of the multipliers of a commutative semi—simple Banach algebra.
This class has been introduced in harmonic analysis, for instance in the study of
the properties of Fourier tranformations, or in the study of convolution operators
and relative problems of characterizations of group algebras. The general theory
of multipliers of abstract commutative semi—simple Banach algebras provides a
natural abstract context for studying many of the properties of convolution
operators acting on the same group algebras. In fact the Gelfand theory permits
to represent every multiplier 7' on a commutative semi—simple Banach algebra 4
as a bounded continuous complex—valued function T defined on a locally compact
Hausdorff space A(A4), the regular maximal ideal space of A. By means of this
representation it appears evident how the spectral properties of T are related to
the range of the continuous function T.

This paper is a survey of recent results on spectral theory of multipliers with
a special attention to the various aspects of Fredholm and Riesz theory.

The content is organized as follows:

Section 1 contains some of the basic properties of multipliers of a
commutative semi—simple Banach algebra. Some of these results are stated
without the assumption of commutativity. This part essentially contains the
Wang— Helgason representation theorem of a multiplier as a bounded continuous
function and a short discussion on the topologies that we can consider on the
maximal ideal space of the multiplier algebra.

In Section 2 we study the concept of relative regularity in the multiplier



2 PIETRO AIENA

algebra and we describe the Fredholm theory of multipliers of semi—prime
Banach algebras. We also show that for large classes of Banach algebras various
kinds of “Fredholm multipliers” coalesce. The most important application of this
section is the characterization of Fredholm convolution operators on group
algebras. ) ‘

Section 3 essentially concerns the Riesz theory of multipliers of commutative
semi—simple Banach algebras. This theory has interesting connections with the
local spectral theory. Also in this section we conclude by giving some applications
on group algebras.

1. BASIC PROPERTIES OF MULTIPLIERS

Let A be a complex Banach algebra (not necessarily commutative) with or
without a unit. A mapping T:A4 — A is said to be a multiplier of A if the
equality

=(Ty) = (Te)y
holds for all z,y€ A. The Banach algebra A is said to be without order (or also
proper) if for all ze A, zA = {0} implies =0, or if for all ze A, Az= {0}
" implies z= 0. Examples of Banach algebras without order are all Banach algebras
with an approximate identity and all semi—prime Banach algebras (i.e., Banach
algebras without nilpotent nonzero ideals). In particular any semi—simple Banach
algebra (i.e., any Banach algebra with radical zero) is without order.

If A is without order, any multiplier T is linear and the equalities

T(zy) = 2(Ty) = (Tz)y
hold for all z,ye A ([17]), thus the range T(A) of T is a two—sided ideal of 4.
As a consequence of the closed graph theorem, we also have that T is bounded
(see [17], Theorem 1.1.1). Let us denote by L(4) the Banach algebra of all linear
bounded operators on A and by M(A) the set of all multipliers of A. In the
sequel we shall denote by o(z,B), B any Banach algebra, the spectrum of an
element z € B.
For a Banach algebra A without order we have ([17]):

I) M(A4) is a closed commutative subalgebra of L(A4) which contains the
identity of L(A4).

II) M(A) is an inverse closed subalgebra of L(A4), i.e., if T-1 does exit,
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TeM(A), then T-1e M(A).
1) o(T,L(A)) = o(T,M(A)), for each Te M(4).

- 1IV) If A is commutative, then the mapping z+— L., L, the multiplication
operator defined by L,y = zy for all y€ A, is a continuous isomorphism of
the algebra A onto the ideal {L, : z€ A} in M(A).

V) If A is semi-—simple commutative algebra, then also M(A4) is

semi—simple.

Observe that by identifying A with {L,:z€ A}, a commutative Banach
algebra 4 may be thought as an ideal, generally not closed, of M(A4).

Given a commutative semi—simple Banach algebra A4, let A(A) denote the
maximal regular ideal space of A. From Gelfand theory it is well-known that
A(A) may be identified with the set of all non trivial multiplicative linear
functionals on A. Moreover A(A), equipped with the topology of pointwise
convergence (the so called Gelfand topology), is a locally compact Hausdorff
space. If we denote by Cy(A(A)) the Banach algebra of all continuous complex
valued functions defined on A(A) which vanish at infinity, the Gelfand
representation €A — € Cy(A(A)), defined by z(m):=m(z) for each
multiplicative functional me A(A), is an isomorphism of 4 into Cy(A).

Each multiplier of A defines a bounded continuous complex function on the
locally compact Hausdorff space A(A). In fact we have

THEOREM 1.1. [23] Let A be a semi—simple commutative Banach algebra.
Then for each T € M(A) there ezists a unique bounded continuous function g7 on
A(A) such that ’

(T(z)) (m) = or(m)z(m)
holds for allz€ A and allme A(A). Moreover |or|o < IT|-

The function @ which corresponds to the multiplier T is called the Wang—
Helgason function of T.

The following theorem gives some information on the spectral properties of
multipliers of commutative semi—simple Banach algebras. As usual, the point
spectrum and the residual spectrum of T € M(A) will be denote by ¢,(T) and
o,(T), respectively. Note that A€ o,(7) if and only if AJ — T is injective but
has non—dense range.
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THEOREM 1.2. [2] Let A be a commutative semi—simple Banach algebra
and Te M(A). We have:

i) 0p(7) € pr(A(4)) € 0, (T)U g, (T).

ii) If A has discrete mazimal ideal space, then a,(T) = o7 (A(A)).

Observe that since M(A) is a commutative Banach algebra we can also
consider the maximal ideal space A(M(A)) of M(A) and the Gelfand transform
T of the element T¢ M(A). There is a relationship between the two functions ¢
and T: the function @7 is the restriction of T on a certain subset of A(M(A4))
that may be identified with A(A). In order to explain that let first give some
preliminary definitions.

Given an arbitrary commutative Banach algebra B and an ideal J of B, the
hull of J is defined to be the set

h(J) :={meA(B): m vanishes on J} = {me A(B) : 2(m) =0 for all zeil} .

- Now, let me A(A) and let z be any element of A for which m(z) #0. For
each Te M(A) let us define m*(T):= m(Tz)/m(z). It is easy to check that m*
does not depend of the choice of z and that m* € A(M(A4)). Moreover, m* is the
unique element of A(M(A)) whose restriction on A coincides with m. Tt is
evident that given any element peA(M(A4)) we have one of the following
possibilities: either the restriction yj4 =0, i.e., p€h(A), the hull of the ideal A
in M(A), or the restriction p)4 € A(4). The set A(A) may be identified with the
set Q= {pe A(M(A)): € A(A)}. For this reason we shall write

A(M(A)) = A(A)UR(A) .

As we announced before, the restriction of the Gelfand transform T on
A(A) coincides with the Wang—Helgason function ¢ of T.

The decomposition of A(M(A4)) above is just a set—theoretic description.
Topologically we can say several things: for instance the Gelfand topology of
A(A) is the restricton on this set of the Gelfand topology of A(M(A)). Moreover
A(A) is an open subset of A(M(A4)) while the hull h(A) is compact [17].

In the maximal regular ideal space of a commutative Banach algebra B one
may define another topology weaker than the Gelfand topology, the so called
hull—kernel topology. First we recall that given a subset Ec A(B) the kernel of F
is defined to be the set
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k(F):={zeB:m(z)=0forall meE} .
The hull-kernel topology is determined by the Kuratowski closure operation: the
closure in this topology of Ec A(B) is the set cl(E) :=h(k(E)).

If we consider the two Banach algebras A and M(A), it is easily seen that
the hull-kernel topology of A(A) is the relative hull—kernel topology induced by
A(M(A)). Moreover, with respect to the hull—kernel topology, A(A) is an open
subset of A(M(A)), whereas this is not always true with respect to the Gelfand
topology.

We shall also consider in this paper two important subsets of AM(A), the
ideal

Mo(A) = {TeM(A): Tip = @7 vanishes at infinity on A(4)}

and the ideal
Moo(A) = {TeM(A): T vanishes on h(A4)} .
Clearly, we have
Ac My(A) c My(A)c M(4),

and all these inclusions may be strict [18].

2. RELATIVE REGULARITY AND FREDHOLM THEORY ON M(4)

We begin this section by giving some preliminary definitions and basic
results on operator theory. Given a linear operator T on a vector space X, the
ascent of T is defined to be, if it exists, the smallest integer p =p(7) >0 such
that Ker 77 = Ker TP*}. I{ there is no such integer we set p(7) = oc. Analogously
the descent of T is defined to be, if it exists, the smallest integer ¢=¢(7)>0
such that 79(X) = T9*1(X). If there is no such integer we set ¢(7) =oc. It is
well—known [12] that if both the ascent p(7) and the descent ¢(7) of T are
finite, then they are equal. The finiteness of the ascent and the descent of the
linear operator 7 .is related to a certain decomposition of the vector space X: if
p=p(T)=¢(T)<oo, then the decomposition X = TP(X)® Ker 77 holds and
conversely, if for a positive integer n we have X =T7T7"(X)® Ker 7™, then
p(T)=4q(T) < n (see[12, Prop. 38.4)).

If X is a Banach space, the condition 0 < p(T) =4¢(7T)=peNis equivalent
to the condition “0€ € is a pole of order p of the vector—valued function
R(X,T)= (M- T)1”; (sec [12, Prop. 50.2]).
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DEFINITION. Given an algebra A(X) of endomorphisms on a vector space
X, we shall say that Te A(X) is relatively regular (in A(X)) if there exists an
operator S€ A(X) for which the equalities

T=TST, STS=S
hold. The operator S is also called a generalized inverse of T in A(X).

Observe that in the definition above we may only require 7= TST. In fact,
if TST=T, then the operator S’:=STS satisfies both the equalities T=TS'T
and S'=S5'TS’. Moreover, if T=TST and STS=S, then P:=TS and Q:=S5T
are projections with P(X) = T(X) and Ker Q= (/ — Q)(X) = Ker T.

A generalized inverse of an operator, if it exists, is not always uniquely
determined. .But, as it is easy to show, there exists at most one generalized
inverse which commutes with a given T € A(X).

In a Banach space X, for a bounded operator T€L(X), the property of
having a commuting generalized inverse Se L(X) is equivalent to the property
- p(T)=4q(T)<1 or equivalently to the factorization T=PU=UP, where
Ue L(X) is invertible and P e L(X) is a projection [20].

If we consider the special case of a multiplier of a (not necessarily
commutative) Banach algebra without order we can say more:

THEOREM 2.1. [20] If Te M(A), A a Banach algebra without order, then
the following properties are equivalent:
1) T has a commuting generalized inverse S€ L(A).
ii) T has a generalized inverse Se M(A).
iii) A=T(A)®Ker T, e p(T)=¢q(T)<1.
iv) T=PU= UP where Ue M(A) is invertible and P € M(A) is idempotent.

Now, if 4 is a semi—prime Banach algebra, Te M(A) and ze€ Ker T2, we
have .
(Tr)y(Tz) = T(zT(zy)) = TX(zyz) = (T?z)yz =0,

for any yeA; hence Tr=0 and Ker T2c Ker T. The opposite inclusion is
trivially verified for each linear operator on a vector space, so for each Te€ M(A)
we have p(T) < 1. From that it follows:

THEOREM 2.2. For a semi—prime Banach algebra A all the statements of
the previous theorem are equivalent to the property ¢(T)< 1, ne. T A)=T(4).
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Now, let us denote by ¢,(A) the class of all upper semi—Fredholm
operators and by ®_(A) the class of all lower semi—Fredholm operators, defined
as follows

$,(A):={TeL(A): a(T) :=dimKer T<oo, T(A) is closed} ,
$_(A) :={TeL(A): f(T):=codim T(A) <oo, T(A) is closed} .

The class of all Fredholm operators on A is defined as ®(4):=
®,(A)n®_(A). We recall that, by the so called Atkinson characterization of
Fredholm operators, $(A4) coincides with the class of all operators of L(A)
invertible modulo K(4), the two—sided ideal of all compact operators on A [12].
Finally, let ®4(A4) denote the class of all Fredholm operators T on A having
index ind(T):= a(T) - A(T)=0.

An elementary property of a multiplier 7€ M(4) of a semi—prime Banach
algebra is that T(A)NKer T = {0}. A direct consequence of this disjointness is

(1) do(A)NM(A) C D(A)NM(A) = d_(A)NM(A) C ®,(A)NM(A).

The class $o(A4) NM(A) may be characterized in a very useful way. Let Ky (A)
denote the ideal in M(A) of all multipliers which are compact operators, and let

Sy(A) :={TeM(A): Tisinvertible in M(A) modulo Ky (A)} .

The next theorem shows that we have a sort of “Atkinson characterization” of
Do(A)NM(A):

THEOREM 23. [6] Let A be a semi—prime Banach algebra and let
Te M(A). Then the following statements are equivalent:
i) Tedg(A)nM(A4).
ii) Tedy(A).
iii) T s relatively reqular in M(A), and a(T) and ((T) are both finite.
iv) T=R+ K, where ReM(A) 1is bijective and KeM(A) 1is finte
dimensional.
v) T=UV, where Ue &y (A) is idempotent and V€ $y(A) 1s invertible.

The characterization above has a special interest in the case of a
commutative algebra. In fact in this case the Calkin algebra L(4)/K(A) is not
commutative; however M(A) and Ky(A) are commutative. Moreover, as we
shall see later, in several applications there are concrete models of
M(A) and Ky (A).
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Note that the property p(7T) <1 has some interesting consequences on the
index of a multiplier: if Te ®(A)nM(A) we have two possibilities (sce [12,
Theorem 51.1]):

a) indT=0and p(7)=¢(T)<1.

b) indT< 0 and ¢(7) =c0.

In [4] it is shown that if A= A(ID) is the disc algebra and 7, is the
multiplication operator by g(z) =z, z€ID , then T, has index = — 1.

Hence the inclusion ®o(A)NM(A) c ®(4)nM(A) may be strict. However,
as we shall see later, for a large class of algebras the two sets coincide.

We recall that given a semi—prime algebra A, it is possible to define the
socle of A [10] as the sum of all minimal right ideals (it is also equal to the sum of
the minimal left ideals, so it is a two—sided ideal in A) or (0) if there are none.
Let Min (A) be the set of all minimal idempotents of A, i.e.

Min(A) :={eed:0+e=¢€2, ede=Ce} .
The socle can be characterized in terms of the elements of Min (4):
socA={ L7, Ae; - neN, e; € Min(A) }
In case Min (A) is empty, we set soc.A = (0).

Now, let us consider again a semi—prime Banach algebra A and TeM(A).
Note that each minimal idempotent e is an eigenvector of 7: in fact,
Te=T(e3) =e(Te)ee Ce. This fact, and the disjointness 7'(4)n Ker 7= {0},
easily implies that socA c T(4) ®Ker T.

A consequence of the last inclusion is the following theorem.

THEOREM 24. [6] If A 1s a semi—prime Banach algebra with a dense socle,
then

(2) Gy (A)=do(A)NM(A) = S(A)NM(A) =& (A)NM(A) =, (A)nM(A).

We shall see later that the last result in the commutative case ‘may be
extended to a larger class of Banach algebras. We recall that a commutative
Banach algebra A is said to be Tauberian if the set {z: the Gelfand transform z
has compact support on A(A)} is norm dense in A. Again, a commutative
Banach algebra 4 is said to be regular if for every closed subset F'c A(4), and
every mg € A(A)\F there is an element z€ A for which mg(z) #0 while m(z) =0
for all m € F. Note that each commutative Banach algebra 4 with a dense socle
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has discrete maximal ideal [10], so by the Silov idempotent theorem these
algebras are regular. Moreover, since the isolated points of A(A) support the
minimal idempotents of A, if A has a dense socle then A is also Tauberian.

Next we want to describe shortly the multiplier algebra for the group
algebra A=L;(G), G a locally compact abelian group. First we recall some
well-known facts of the Gelfand theory for this algebra. The regular maximal
ideal space of the commutative semi—simple Banach algebras 4 =L;(G), G a
locally compact abelian group, or of A =L,(G), 1 <p <oo and G compact, is the
set of all continuous characters on G, i.e., the dual group G ([13]). Note that the
dual group G is discrete if G is compact. The Gelfand transform f of an element
in anyone of these algebras is the so—called Fourier—transform of [ defined by

fn= [t ., (e6).
Moreover, the Gelfand topology on the regular maximal ideal space A(4) =G
coincides with the usual topology on the dual group G.

The algebra of multipliers of the group algebra L;(G), G a locally compact
abelian group, may be characterized in a precise way [17]: for each T € M(L,(G))
there exists an unique measure € M(G) such that T=T,, where 7}, : L;(G) —
Li(G) denotes the convolution operator defined by T,(f):=pu*f, feL,(G).
Moreover M(L,(G)) is isometrically isomorphic to M(G).

An obvious consequence of the previous theorem and of Theorem 1.4 is that
for each multiplier T=7T, of L;(G) the Wang—Helgason function pr on A(A)
coincides with the Fourier—transform g on G.

The following relevant result of abstract harmonic analysis, due to Host and
Parreau [14], characterizes the convolution operators on L () having a closed
range.

THEOREM 2.5. The convolution operator 1), : L1(G) — Ly(G), G a locally
compact abelian group, has a closed range if and only if there exists an invertible
measure v € M(G) and an idempotent measure 7 such that p= v+, 1.e., T, 1s the

product of an invertible multiplier and an idempotent multiplier.

By Theorem 2.2, the Host and Parreaw’s theorem may be phrased as
follows:
T, has a closed range < ’1"12 (A)=T,(A).

In a abstract setting the last equivalence may be not true: generally given a
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multiplier T€ M(A) of a semi—prime Banach algebra, the assumption T(A4)
closed does not imply T2(A) = T(A), or equivalently p(T)=¢(T)<1. For
instance, let 4 =A(ID) be the disc algebra and let T, be the multiplication
operator by g(z) =2, z€ID . Then ind(T,)=~—1 and hence, as observed above,
q(T,4) = oo, while the operator T, has a closed range.

Observed that, if A is a semi—prime Banach algebra, the implication

T2(A) =T(A) = T(A) is closed

is always true. In fact, in this case we have p(T)=¢(T)<1 and hence, by
Theorem 2.1, A =T(A)®Ker T which implies the closedness of T(A) (see [12],
Proposition 50.2).

It is reasonable to conjecture that the Host and Parreau’s theorem may be
extended to more general algebras. For instance, by assuming some structural
properties on A, say A regular and Tauberian, then the equivalence

T%(A) = T(A) = T(A) is closed

could be true for each multiplier Te€ M(A).
In [5, Theorem 4.2], it is shown that given a semi—simple regular Tauberian
Banach algebra A and T € M(A4), then the equivalences

3) T2(A) =T(4) o T2(A) is closed < T(A)®KerT is closed

hold. An interesting consequence of these equivalences is obtained when
TeM(A) is injective. In fact if T(A) is closed and T is injective, then
T(A)®Ker T is trivially closed, so T2(A) =T(A) or equivalently, by
Theorem 2.2, A=T(A)®Ker T=T(A). Hence T is surjective. Conversely if T
is surjective, since T(A) n Ker T= {0}, we have T injective. We have proved:

THEOREM 2.6. Let A be a regular semi—simple commutative Tauberian
Banach algebra and suppose that T € M(A) has closed range. Then T is surjective
if and only if T is injective.

Another direct consequence of (3) is the extension of (2) to semi—simple
commutative regular Tauberian Banach algebras. In fact, for any multiplier
Ted (A)NM(A) the sum T(A)®Ker T is closed, so ¢(T)<1 and hence A =
T(A)® Ker T. This shows that Te ®o(A)NM(A4):

THEOREM 2.7. [5] Suppose A is a regular semi—simple commutative
Tauberian Banach algebra. Then
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By (A) = Bo(A)NM(A) = B(A)NM(A) = &_(A)NM(A) = d,(A)nM(A).

In [16] Kamowitz has shown that if A is a commutative semi-simple
Banach algebra having maximal regular space A(4) with no isolated points, then
TeM(A) is compact if and only if T=0. If A is also regular and Tauberian, by
Theorem 2.7, any semi—Fredholm multiplier T belongs to & (A4). The
Kamowizt’s result then implies that 7T is invertible. With an assumption of

connectedness we can say more:

THEOREM 28. [5] Suppose A is a regular semi—simple commutative
Tauberian Banach algebra with connected mazimal idela space A(A) and
0+ TeM(A). Then the following statements are equivalent:

i) T is semi—Fredholm.

ii) T2 has closed range.

iii) T is invertible.

The most natural application of the theory developed in this section is the
complete description of Fredholm theory for convolution operators on the group
algebra L,(G). It is well-known that L;(G) is a regular Tauberian Banach
algebra. Taking into account the Host and Parreau’s theorem, we have the

following.

THEOREM 2.9. [5] Let G be a locally compact abelian group and pe M(G) a
non—zero regular complez Borel measure on G. For the convolution operator
T, :L1(G)— Ly(G) consider the following statements:

1) p 1s tnvertible in M(G).

i) T, is semi~Fredholm.

iii) T, is Fredholm.

iv) T, 1s Fredholm of indez zero.
v)  u s invertible in M(G) modulo the compact multipliers.
vi) p*xL,(G) is closed and p +0.

vil)  p*pxL(G) is closed.

viii) p is the product of a nonzero idempotent measure and an invertible

measure.
Then the following implications hold:

1) = ii) & iii) o iv) © v) = vi) o vii) < viii)
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If the dual group G has no isolated points, then ii) = 1i).
If the dual group G is connected, then all the statements i) — viii) are equivalent.

In [9] it has been shown that if G is a compact abelian group then
Ky (L1(G)) ~ L{(G). In this case the socle of L(G) is dense in Li(G) and
coincides with the ideal P(G) of all trigonometric polynomials [13]. This ideal is
also the socle of the multiplier algebra M(G) [10]. In the next section we shall see
that the equality socA =socM(A4) holds for each semi-simple commutative
Banach algebra.

Observe that if G is compact, the ideal Fy(L;(G)) of all finite dimensional
convolution operators on L;(G) may be identified with P(G) [13]. Since
Ky (L1(G))~L,(G) and Fy(L,(G)) ~ P(G) have the same set of projections,
the set of all elements in M(G) invertible modulo L(G) is the same as the set of
all elements in M(G) invertible modulo P(G) (that is also a consequence of the

inclusions (5) of the next section).

THEOREM 2.10. Let G be a compact abelian group and peM(G) a
non—zero regular complex Borel measure on G. For the convolution operator
T, :L1(G)— L,(G) the statement v) of Theorem 2.9 may be replaced by
V') pis invertible in M(G) modulo L,(G),
or equivalently
V") wis invertible in M(G) modulo P(G).

Moreover all the statements ii) — v) are equivalent to the following statement:
ix) u=v+ ¢, ve M(G) invertible and p € L{(G) (or w€ P(G)).

A class of commutative Banach algebras whose multiplier theory has certain
interest is the class of Banach algebras with an orthogonal basis. We recall that a
sequence {e } of elements of a Banach algebra A4 is said to be an orthogonal basis
of A if the following two conditions are verified

i) exe; = G e forallk,j>1.

ii) For each z€ A there exists a unique sequence {A;(z)} of scalars such that

T = lrizmmZ::l)\k(z)ek =Y, Ak(z)ex
Trivially any Banach algebra with an orthogonal basis is commutative.
Moreover, since the coefficients A, depend upon z, it is easy to check that any A,
is a multiplicative linear functional on A. It is easily seen that any Banach
algebra with an orthogonal basis is semi—simple. Moreover, any Banach algebra
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A with an orthogonal basis {¢;} has a dense socle, because the set of all minimal
projections Min A coincides with the sequence {e;}. Hence the maximal ideal
space A(A) is discrete and, by the Silov idempotent theorem, A is also regular.

In the following we give some examples of Banach algebras with an
orthogonal basis.

i) The sequence algebras £,, where 1<p<oo, and ¢y (with respect to
pointwise operations). An orthogonal basis of these algebras is given by

the standard basis {u; }, where y, := (51”' )J‘zo L

ii) The algebras L,(I'), 1 <p<oo, I' the circle group, with convolution as
multiplication. In fact the sequence {e;}, where e;(z) == zF, ze ", k€ Z,
is an orthogonal basis for L, (T") (see [15]).
iii) The so—called Hardy algebra HP(ID), 1 <p<oo, where ID is the closed
unit disc of €. The multiplication on H?(ID) is defined by
-1 B}
(f*g)(z) = (2mi) f(z) g(zz71) 271 dz

lzl=r

where f,g€ HP(ID), |z| <r< 1. 1f we let ¢(2) :=zF, z¢ 1D, k€N, the sequence
{ex} is an orthogonal basis for //7(ID) [15].

iv) Any commutative separable H* —algebra (see [17]).

The framework of Banach algebras with an orthogonal basis seems to be the
more natural abstract context for unifying the study of multipliers of several
algebras.

The next theorem shows that the multipliers of these algebras may be
essentially thought as bounded complex sequences:

THEOREM 2.11. (3] Let 4 be a Banach algebra with an orthogonal basis
{er}. Then there ezists a continuous isomorphism ¥ of M(A) onto a subalgebra of
{y. If the basis {e;} is unconditional, then the map ¥ is a isomorphism of M(A)
onto {y.

If the basis {¢} is unconditional, the Fredholm multipliers of A may be
characterized in a very simple way:

THEOREM 2.12. [3] Let A be a Banach algebra with an orthogonal
unconditional basis {e,} and let {A,T(er)} be the sequence associated with
TeM(A). Then T is a Fredholm multiplier of A 1if and only if there exists a
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bounded sequence {v} such that l}cm U M(Te) =1.
-

3. RIESZ MULTIPLIERS AND LOCAL SPECTRAL THEORY

The first part of this section is devoted to some characterizations of Riesz
operators defined on a complex infinite dimensional Banach space X This class of
operators is defined by assuming as axiom a well-known property of a compact
operator: T € L(X) is said to be a Riesz operator if \I — T € $(X) for all A € C\0.
Every Riesz operator has a finite or a countable spectrum o T') which can cluster
at most at 0. Moreover each spectral point A #0 is an eigenvalue of T [12].

There are several ways of characterizing Riesz operators. For instance, Riesz
operators have been characterized by Ruston as those operators for which AT — T
is invertible in L(X) modulo the compact operators, for every A € C\ 0. Riesz
operators may also be characterized as those operators T'e€ L(X) for which all
non—zero points of the spectrum are poles of finite rank of the resolvent [12].

In order to give other characterizations of this class of operators, we need
first to introduce some basic concepts of local spectral theory. If TeL(X) and
z€e X, the local resolvent set pr(z) is defined to be the union of all open subsets
of € on which the equation (A — T)z(A) =z admits an analytic solution z(X).
The local spectrum o7 (z) is defined to be the complement €\ pr(z). Given a
closed subset F' of C, the analytic spectral subspace is defined to be the space
Xp(F):={zeX:or(z)cF}. Finally, an operator TeL(X) is said to be
decomposable if for any open covering {U;, Uy} of the complex plane C there are
two T—invariant closed linear subspaces Y; and Y, of X such that Y; + Yo =X
and o(T)y,)c Ui for k=1,2. Note that, since every bounded operator on a
Banach space with totally disconnected spectrum is decomposable, any Riesz
operator is decomposable.

THEOREM 3.1. Let X be a Banach space and T € L(X). Then the following
statements are equivalent:
i) T is a Riesz operator.
il) o(T)\ O is discrete and the restriction Ty of T on any T—invariant
infinite dimensional closed subspace Y is not bijective.
ili) T is decomposable and for all closed subsets FC C\ 0 the spectral
subspaces X7 (F) are finite dimensional.

The equivalence i) < ii) above is quoted in [1]; the equivalence i) <« iii)
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may be found in [7].

Next, we want to consider the case of a multiplier T' of a commutative
semi—simple Banach algebra A. In order to characterize Riesz multipliers we first
need to give some information on the Fredholm theory of abstract Banach
algebras (the monograph [10] is our main reference). For simplicity, we shall only
consider these concepts on commutative Banach algebras.

If Ais a commutative Banach algebra with unit and J is a two—sided ideal
of 4, it is well-known that

z € A is invertible modulo J < z € A is invertible modulo k(k(J)) .

If Ais semi—simple with socle soc.A, then it is evident that the invertibility in A
modulo socA is equivalent to the invertibility modulo any ideal J for which

(4) socA c J c k(h(socA)) . *

An ideal J for which the inclusion Jck(h(socA)) holds is said to be an
inessential ideal of A. The elements of 4 invertible modulo an inessential ideal J
are called J—Fredholm elements of A and the set of these elements will be denoted
by the symbol ®;(A). The inessentiality of an ideal has been characterized by
Smyth [22] in terms of the spectrum of its elements: an ideal J is inessential if
and only if for each z€ J the spectrum is finite or a sequence which converges to
0. If we take A=M(A), by (III) of §.1, then the ideal K} (A) is an inessential
ideal, thus the set ¢, (A4) introduced in §.2 is the set of all Ky (A)—Fredholm
elements of M(4).

In order to develop a Fredholm theory of the multiplier algebra M(A4), we
need the following result:

THEOREM 3.2. (7] Let A be a commutative semi—simple Banach algebra.
Then soc A =soc M(A).

In [10] it is shown that a commutative Banach algebra A has discrete
maximal regular ideal if and only if A=k(h(soc4)) (a Banach algebra which
verifies the last equality is called a Riesz algebra). From that it easily follows that
any commutative Banach algebra A with a discrete maximal ideal space A(A) is
an inessential ideal in M(A). Clearly, in this case we have the following
inclusions:

(5) socA =socM(A)C A C kya(huay(socA)) = kycay(hucay(soc M(A)))



16 PIETRO AIENA

and
(6) soc A C Ky (A) C kycay(hycar(socA))

(where it is evident that the subscript means that the hull and the kernel are
considered with respect to M(A)). From the inclusions (5) and (6) it easily

follows the equalities
P (A) = Pooca(M(A)) =04 (M(A4)) .

Note that the equality @y (A) = $,,.4(M(A)) holds without any assumption of
discreteness of A(A).

The following theorem lists several characterizations of Riesz multipliers of
semi—simple commutative Banach algebras. Note that if T is a Riesz multiplier

of a commutative semi—simple Banach algebra, then T'e My(A4) [7].

THEOREM 3.3. [7] If A is a semi—simple commutative Banach algebra and
TeM(A), then the following statements are equivalent:

i) T s a Riesz operator.

ii) The multiplication operator L : SeM(A)— TSeM(A) 1s a Ruesz

operator.

) TeMg(A) and Ly : Se My(A) — TSe My(A) 1s a Riesz operator.

) Tekycay(hugcay(soc4)).

) Forevery A€ C\ 0 we have M — Te dy(A4) = Pgoeq(M(A)).

) o(T) is finite or a countable set which clusters at 0 and the restriction T
of T on any T—invariant infinite dimensional closed ideal J s not
wnvertible.

vil) T 1is decomposable and for all closed subsets FCC\0 the spectral

subspaces Ay (F) are finite dimensional.

In order to give other characterizations of Riesz multipliers we need to
introduce some other concepts of local spectral theory.

An operator TeL(X), X a Banach space, is said to have the weak
2—Spectral Decomposition Property (shortly weak 2-SDP) if, for any open
covering { Uy, Uy} of the complex plane € there are two 7'—invariant closed linear
subspaces Y; and Y, of X such that the sum VY, + Y, is dense in X and
o(Tyy,)CUg fork=1,2.

A bounded operator T'€ L(X), X a Banach space, is said to be super—

decomposable whenever, for any open covering {U;, Uy} of the complex plane C,
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there exists some operator R € L(X) such that RT=TR, o(T\gx)) CU; and
o(Ty1-ryx)) € Vs '

It is known that any decomposable operator has the weak 2—SDP. Generally
the converse does not hold [8]. An example of a decomposable, but not
super—decomposable operator can be found in [11]. Later we shall see that for
certain classes of multipliers also the converse holds.

In f21] Neumann has shown that for a multiplication operator L,: 4 — A,
a€ A, all the kinds of decomposabilities above defined are equivalent to the
property that the Gelfand transform a: A(A) — C is continuous with respect to
the hull-kernel topology in A(A4). In particular, this result holds for any
multiplication operator L,: A— A of a commutative regular semi—simple
Banach algebra: in fact in these algebras the Gelfand topology and the
hull—kernel topology in A(A) coincide.

The situation becomes more complicate if, instead of a multiplication
operator, we look at the problem of decomposability of a multiplier Te M(A).
For a multiplier T the hull-kernel continuity of ¢ = T|A(A) 1s only a necessary
condition for the decomposability: in fact there are exaniples of
non—decomposable multipliers, even on regular commutative Banach algebras, for
which Tya(4) is hull—kernel continuous [18].

Actually a characterization of decomposable multipliers is still missing. The
situation becomes partially more favourable if we take TeMy(A4) or even
TeMy(A) (see[18]). Next, we want to give several characterizations of
decomposable multipliers in My(A) obtained by imposing some additional
topological assumptions on A(A).

First, we recall that a locally compact space A is said to be scattered if each
non—empty compact subset of A contains an isolated point. Clearly, every

discrete space is scattered and every scattered space is totally disconnected.

THEOREM 3.4. [18],[19] Let A be a commutative semi—simple Banach
algebra with A(A) scattered in the Gelfand topology. Then, for each Te M(A), the
following statements are equivalent:

(a) TeMy(A) and T is hull—kernel continuous on A(M(A)).
(b) TeMy(A) and T is decomposable.

(¢) TeMy(A) and T has the weak 2—SDP.

(d) TeMy(A) and T is super—decomposable.
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(e) TeMy(A) and o(T) = T(A(A)U{0} = T(A(A)) ™.
(f) TeMy(A) and o(T) is countable.
(8) TeMoo(4).

We recall that an operator Te€L(X), X a Banach space, is said to be
meromorphic if all non—zero point of the spectrum are poles of the resolvent
R(A,T)= (M- T)_l. A meromorphic multiplier of a semi—simple Banach
algebra may be characterized in a very simple way (see [6] or [7]): a multiplier
TeM(A) is meromorphic if and only if the spectrum ¢(T) is a finite set or a
sequence which converges to zero.

Now, let us consider again the case of Banach algebras wich discrete
maximal regular ideal space A(A). In this case, by the inclusions (5), we have

kway(hmcay(soc A)) = kyay(hmca)(4)) = Moo(4) -

_ This fact and the mentioned characterization of meromorphic multipliers
imply the following theorem.

THEOREM 3.5. Let A be a commutative semi—simple Banach algebra with
discrete mazimal regular ideal A(A). Then, for each T € M(A), all the statements
(a) — (g) of Theorem 3.4 are equivalent to the statements i) — vii) of
Theorem 3.3. Moreover these statements are also equivalent to the following
property:

* Te My(A) and T is meromorphic.

We now apply the abstract theory developed in this section to the group -
algebra L;(G). For any locally compact abelian group G, let us consider the
ideals in M(G)

My(G) := {ue M(G) : ji vanishes at infinity on G} ,
and
Myo(G) := {ne M(G) : ji on A(M(G)) vanishes outside of G} .

Clearly, if A=L,(G), we have My(A) =My(G) and Myo(A) = Myo(G).
Let 8 be the identity measure on M(G). By specializing the results of
Theorem 3.5 to the algebra M(G), we obtain the following theorem:

THEOREM 3.6. [4],[18] Let G be a compact abelian group and pe My(G) a
non—zero regular compler Borel measure on G. For the convolution operator

T, :L1(G) — L,(G) the following statements are equivalent:



i)
ii)
iii)
iv)
v)
vi)
vii)
vii)
ix)

x)
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4 18 hull—kernel continuous on A(M(A)).

T, s decomposable.

T, has the weak 2—SDP.

T, 1s super—decomposable.

T, is a Riesz operator. »

A8 — w is invertible in M(G) modulo P(G) for every A€ C\ 0.
T, is meromorphic.

o(4) = o(Ty :Ly(€) — Ly(G)) = (G) ™.

T, has a countable spectrum.

p € Moo(G).

Borrowing a concept from harmonic analysis, we shall say that a multiplier
TeM(A) has a natural spectrum if o(T)=T(A(4))”. By Theorem 3.4, if
A(A) is scattered, T has a natural spectrum if and only if T is decomposable. A
multiplier T € M(A) has natural local spectra if or(z)=T (supp £) for each
z€ A. This notion is a slightly strongef than the property of having a natural
spectrum. It can be shown that if A has scattered maximal regular ideal space
then the two notions coincide [11]. So, if A(A) is discrete the property of having a
natural spectrum, as well as other concepts of decomposability (see [11],[19])

characterizes Riesz multipliers.

w
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