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1. INTRODUCTION AND STATEMENT OF RESULTS

Let A be a Banach operator algebra, acting on a Banach space E. In this
case E is naturally considered as a Banach left 4 —module with the outer multi-
plication a.z = a(z) where a is an operator in A, and z € E. A typical problem
of the homological theory of operator algebras is to describe, for given A,
homological properties of this particular 4 —module.

We say, for brevity, that A has some homological property spatially, if £
has just this property. For example, * spatially flat operator algebras are those
with flat F, etc.

" Among the existing results in this direction, it is known that algebras of all
bounded and of all compact operators on a arbitrary Banach space E are spatially
projective (Kaliman and Selivanov, [12]), and that nest algebras in a Hilbert
space are spatially flat (Golovin [3]). Recently Golovin gave a complete
characterization of spatially projective and spatially flat nondecomposable
CSL —algebras [4].

In the present paper, we concentrate on the case of operator C* —algebras,
that is self—adjoint and norm closed subalgebras of the algebra B(H) of all
bounded operators on a Hilbert space H, and specially on the "classical" case of
von Neumann algebras (i.e. those operator C*-algebras, which are
weakly—operator closed in B(H)). As to spatially projective von Neumann
algebras, their characterization in inner terms of their structure was given in [8].
It turned out, that the assumption of the spatial projectivity is rather strong. In
particular, all von Neumann algebras with such a property must belong to the
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type I, but the converse is false : for example, every infinite factor in the standar
form is not spatially projective.

In what follows we show that, in the framework of von Neumann algebras,
spatially flat, and also spatially injective algebras, form much larger classes than
that of spatially projective algebras. In particular all Connes’ algebras (that is
hyperfinite, or equivalently, "Connes injective" von Neumann algebras) have both
properties. Thus, all algebras of type I, and many other algebras, are spatially flat
as well as spatially injective.

Proceeding to strict formulation, we shall recall briefly several standar
notions of the "Banach" homology theory (for more details see e.g. (5] or
(6, Ch. VII]).

Let A be a (so far arbitrary) Banach algebra. As usual, we denote the
categories of Banach left modules, Banach right modules, and Banach bimodules
respectively by A—mod, mod—A, and A—-mod—A4.

If X,YeA—mod (respectively, mod—4, A—mod—A), then the space of
morphisms between X and Y in the relevant category is denoted by 4h(X,Y)
(respectively, hys(X,Y), aha(X,Y)). An additive functor from any of this
categories to the category Ban of Banach spaces is called exact if it sends every
admissible (= splitting in Ban) sequence to an exact sequence.

A Banach left (right, bi—) module X is called flat if the tensor product
functor ?®4 X :mod-A — Ban (respectively, X®,?: A—mod — Ban,
7@, 4X=X®,_ ,7:mod—A — Ban) is exact. (The bimodule tensor product
YéA_A X, X, Ye A—mod—A4, can be defined as YéAem,X, where A€MV is the
enveloping Banach algebra of 4, X is considered as a Banach left, and Y as a
Banach right module over A¢®nV. It is the same Banach space as X éA env Y)-

A Banach left (right, bi—) module over A is called injective if the morphism
functor 4h(?,X): A—mod — Ban (respectively, h4(?,X): mod—A4 — Ban,
4ha(?,X): A—mod—A4 — Ban) is exact. From the definitions of the flatness
and of the injectivity, one can easily deduce that a Banach left (right, bi—) module
X is flat if and only if its dual right (respectively left, bi— ) module X* is injective.

Now let A be a Banach operator algebra on a Hilbert space H. For a dual
Banach left (right) A-module X and fixed z€ X consider the operator
my,:A— X;a— a.z (m°: A— X;a— z.a). In the spirit of Kadison
and Ringrose [10], we say that a dual Banach left (right, bi—) module X is normal
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if m, (respectively, m,° both m, and m,°) is (are) normal, that is ultra
weakly—weak* continuous, for every z € X.

At last, let A be an operator C*—algebra on H, and A~ be its ultraweak
(or equivalently, weak—operator) closure in B(H). Such an A is called Connes
amenable algebra, or just Connes algebra (cf. [1]), if all continuous derivations of
A with values in normal A —bimodules are inner. (It follows from Theorems 1 and
2 in [7] that such a property implies that every continuous derivation of A with
values in every dual A—bimodule, normal as a left or right module, is also inner.)
As a combined result of Johnson—Kadison—Ringrose [9] and Connes [1] (with a
contribution of Elliot [2]), A is a Connes algebra if and only if A~ is hyperfinite,
or equivalently, is "Connes injective" (that is, there exists a projeection
B(H)— A~ of norm 1).

Sometimes we shall use the words "one—sided module" as a common name
for left and right modules. Now we are able to formulate the main result of this
paper.

THEOREM. FEvery normal one—sided module over a Connes algebra is

injective. If in addition it is reflezive as a Banach space, then it is also flat.

The proof will given in a separate section. At the moment, taking the
theorem for granted, we discuss some of its corollaries.

It is obvious that, for every z € H, the operator B(H)— H ; a — a(z)
is weak operator—weak* continuous and hence normal. Thus, the theorem implies

COROLLARY 1. FEwery Connes algebra is spatially flat and spatially injective.

The theorem can be translated to the language of the cohomology groups.
Recall (see e.g. [5, Ch.0.8§4.2]) that, for a Banach algebra A4 and
X, Ye A-mod (mod—A4), the space B(X,Y) of all bounded operators between
Y and X is considered as a Banach A-—bimodule with outer multiplications
defined as [a.¢](z) = a.(p(z)) and [p.a](z) = p(a.z) (respectively, [a.p](z) =
p(z.a) and [p.a](z) = (p(z)).a);a€ A, peB(Y,X), z€ Y. It is known that
the following properties of X are equivalent: a) X is injective; b)
HY(A,B(Y,X))=0 for all Y€ A-mod (mod—A); and ¢) H*(4,B(Y,X))=0
for all Y € A—mod (mod—A4) and n > 0. Taking into account this, and also the
obvious isomorphism B(Z,X*)~B(X,Z*) where X € A-mod (mod—A4) is
reflexive as a Banach space and Z € mod—4 (4 —mod), we immediately have
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COROLLARY 2. Let A be a Connes algebra on a Hilbert space H, and X be
a normal left (right) A—module. Then H*(A,B(Y,X))=0 for all Y € A—mod
(mod—A) and n>0. If in addition X is reflezive as a Banach space, then
H"(A,B(X,Z*))=0 for all Zemod—A (A-mod) aend n >0. In particular,
H"(A,B(H,Z*)) =0 for all Z€ mod—A and n >0 (cf. [8, Corollary]).

2. THE PROOF OF THE MAIN THEOREM

We begin with several preparatory facts. In what follows, the duality
between a Banach space and its dual will be always denotes by <.,.>.

Let Y€ A-mod (mod—A), Z e A—mod—A. In this situation the morphism
space 4h(Y,Z) (respectively h,(Y,Z)) is considered as a Banach right (left)
A-module with the outer multiplication defined by [¢.a](z) = (¢(z)).a)
(respectively, [a.p](z) = a.(¢(z)); cf. [5, Ch. 0. 4. 2]. As to the following lemma,
we feel that it is well-known to specialists (on the "folklore" level). Nevertheless,
we shall give its proof for the completeness of our exposition.

LEMMA 1. If, with Y and Z as before, Z is an injective A—bimodule, then
Ah(Y,Z) (respectively, hy(Y,Z)) 1is an injective right (respectively, left)
A—module.

Proof. Without the loss of generality, we can assume that Y € A—mod: the
argument in the case Y € mod—4 is strictly parallel to what follows.

As it is known [5, Ch. III.1.4], a Banach (bi) module is injective if and only
if it is a retract of a so called cofree (bi) module in the respective category. In
particular, that means that Z is a retract of an A—bimodule of the form
U:=B(A,® A, E), where E is a Banach space, 4, is A with the adjoint
identity, and outer multiplication are well defined by [a.¢](b®c):= p(b®ca)
and [p.a](b®c) = p(ab®c); a€ A; b,ceA,; peU. In virtue of functorial
properties of 4A(Y,?), this implies that 4A(Y,Z) is a retract of a right
A-module V := 4h(Y,U).

Now notice that V is isomorphic to the right A-module W :=
B(A,,B(X,E)) with the outer multiplication defined by [p.a](b):= ¢(ab) ;
a€A; beA,; pe W. Indeed, it is easy to check that maps a: V— W :
Y — %, where Z is defined by [F(a)]:=[¢(z)](a®e), and f: W— V :
& — 9, where ¢ is well defined by [¢(z)](a®b):=[%(a)](b.z), are mutually
inverse morphisms in mod—A (here a,b€ A,, z€ %, and e is the adjoint
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identity in A,). Hence 4h(Y,Z) is a retract of a module B(A,,F) (with
F =B(X,FE)), that is of a cofree Banach right A—module. It follows from what
was said above that it is injective. |

LEMMA 2. Let A be a Banach algebra with the identity, and X be a Banach

one—sided A—module with zero outer multiplication. Then X 1s injective.

Proof. Again, we can restrict ourselves with the case of a left module X.
Consider the cofree Banach left A-module U:=B(A,,X) with the outer
multiplication defined by [a.¢](b) = ¢(ba); a€ A, b€ A,, p€ U, and the map
a:X— U:z— ¢, where ¢(a) = a.z. It is obvious that « is a morphism in
A—-mod. Further, consider the map : U— X : ¢ — p(e, —¢), where e is
the identity in A and e, is the adjoint identity in A,. Since

Bla.p)=a.p(e,—e) = p(e,a—ea) = p(a—a)=0=af(yp),
f is also a morphism in 4 —mod, and it is obvious that it is a left inverse to a.

That means that X is a retract of a cofree module, and therefore (cf. the proof of
Lemma 1) it is injective. 1

LEMMA 3. Let A be a Banach operator algebra on a Hilbert space, and let
X = (X«)* be a reflezive normal one—sided A—module. Then its dual X* is also
normal.

Proof Again, we can assume that X is a left module. Since it is normal,
we have lim,<a,.z,y> = <a.z,y> for every net a,€ A; v e A, ultraweakly
converging to some a € A, and for every y € X«. But since X is reflexive, it
implies that lim,<f,a,.2>=<f,a.z> or, equivalently, lim,<f a,.z>
= <f,a.z> for every fe X* and z€ X =(X*)«. Thus X* is a normal right
A—module. 1

Continuation of the proof of the Theorem. Suppose X = (X*)s« is a normal
left module over a Connes algebra A. We begin with the principal case, when A
has an identity, say e, and X is unital (that is, e.z = z for all z € X).

Consider the dual A —bimodule A* of A and observe that X is isomorphic
in A—mod to hy(X«,A*) with the outer multiplication described in the begining
of this section. Indeed, it is easy to check that a :z — ¢, where ¢ is defined by
<p(y),a>=<a.z,y> and f:p—> z, where <z,y>=<p(y),e>; ac€4,
T € X; y € X«, are mutually inverse morphisms of these modules.
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Now consider the closed sub—A4 —bimodule A«~ of A* consisting of normal
functionals. (In virtue of Sakai’s theorem, it is just the predual of 4™, see e.g.
[13].) Choose an arbitrary ¢ € hy(Xs,4A*) and ye€ X+, and put f:= p(Y);
suppose that a net a, € A;v € A ultraweakly converges to some a € A. Then

<f,a>=<p(y)e,e>=<p(y.a),e>=<e.z,y.a>=<0a.2,y> ,

and similarly <f,e,>=<a,.z,y> for all veA. Since X is normal,
lim,<a,.z,y>=<a.z,y> and lim,f(a,) = f(e). That means f is normal.
Hence ¢(y) € A« for every ¢ € hy(X+,A*) and y € X«. Therefore hy(X«,A*) =
hga(X«, A+ ), and X is isomorphic to the latter module.

But it was proved in [7, Theorem 3] that an operator C*—algebra 4 is a
Connes algebra if and only if A« is an injective A-—bimodule. Therefore it
follows from Lemma 1 that X is injective.

Proceed to the case when A has an identity, but X is not unital. Then X
canonically decomposes in 4 —mod into the direct sum of its submodules X, =
{zeX:ez=z} and X,={z€ X :ez=0}. Since X, is obviously unital and
normal (with the predual {y € X« : y.e = y}, it follows from what was said above
that it is injective. Since X, has zero outer multiplication, it is injective by virtue
of Lemma 2. Hence X is a direct sum of two injective modules, and therefore it is
injective itself.

Assume, at last, that A has no identity. Denote by e the projection in
B(H) with the image A.H, the closure of the linear span of the set {a(z) : a € 4,
zeH}, and put A,:=Ae{le:)eC}. Obviously, A, is an operator
C*—algebra with the identity e (topologically isomorphic to the "abstract"
unitalization A4, of A). Moreover, since Connes algebras can be completely
described in terms of their ultra—weak closures (cf. the introduction), and (4, )~
obviously coincides with 4™, we conclude that A, is also a Connes algebra.

As in the standard process of unitalization, every Y € A—mod becomes a
Banach left unital A, —module with the outer multiplication b.z:=a.z+ Az,
where b=a+Xe; a€ A; A eC; the latter will be denoted by VY,. Every
morphism of A-modules becomes, after this identification, a morphism of
A, —modules. Moreover, Y is normal, the same is true to Y, : it obviously
follows from the observation that a net b,=a,+A,e; v€eA ultraweakly
converges to b=a+Xe; a,,a€A; A,,A€C if and only if g, ultraweakly
converges to a, and A, converges to A. In particular, X, is normal as well as X,
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and it follows from what was proved in the "unital" case, that X, is injective in
A, —mod.

Tt remains to check the definition of injectivity for X. Take an admissible
complex ¥ of Banach left A —modules; it follows from what was said above that .
it can be considered as an admissible complex in A, —mod, say %, . Since X, is
injective in A, —mod, the complex 4,h( % ,.%,) of Banach spaces is exact. It
follows that the complex 4h( #,.%), which just coincide with the latter, is also
exact. This shows that X is injective. v

Now the first assertion of the theorem is proved. Combining it with
Lemma 3, we have the following: if X is normal and reflexive, then X* is
injective. But, as it was mentioned in the introduction, it is just to say that X is
flat.

We gave the complete proof of the theorem for the case of left modules. The
same argument, with obvious modifications, is valid for right modules. §
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