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An important role in classical potential theory in R"™ is played by the
construction of harmonic functions on domains with prescribed boundary
behaviour. The boundary condition required is usually continuity except at
isolated points where singularities of certain kinds are sought e.g. when n=2,
logarithmic singularities are frequently required and for n> 2 singularities
proportional to (distance)?‘_n are of interest. A similar theory has been developed
in complex potential theory for C" using the Monge-Ampere operator in place of
the Laplacian, but with logarithmic singularities in all dimensions ([1], [3], [4], [5],
[6]). Using maximal plurisubharmonic functions in place of the Monge-Ampere
operator, Lelong [5, 6] has extended this theory to Banach spaces with a finite
number of logarithmic poles or singularities and in [1] the author discusses the
infinite dimensional case for an infinite number of poles. In this article we
consider the fine density of maximal plurisubharmonic functions at an accumu-
lation point of these logarithmic poles. We refer to [2] and [4] for background
information on plurisubharmonic functions on infinite dimensional Banach spaces.

An upper semicontinuous functions f: 2 — R U {-oco}, where Q is an open
subset of a Banach space E is said to be plurisubharmonic if it is not identically
equal to —oco and

27
f(2) <35 [y flz+yre®)ds

forall ze Q, y€ E and r sufficiently small.

We let PSH(Q2) denote the set of all plurisubharmonic functions on Q.

If U is a bounded open subset of 2, Uc 2, ge PSH(Q) and f< g on dU
(the boundary of U) implies f< g on U then we say that g is a mazimal plurisub—
harmonic function on §2.
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If dim(E)=1 then f is maximal plurisubharmonic if and only if it is
harmonic while if dim(F) < oo and f is locally bounded, then f is maximal
plurisubharmonic if and only if it satisfies the homogeneous (complex) Monge-
Ampere equation.

The Lelong density, vs(a), of fe PSH(Q) at a point a in Q is defined as

lim inf {f(z)/log"z—all} .
z=a
If lim {f(z)/log [z-all} exists then we call vf(a) the regular density of f at a.
zZ-a

Suppose {a.,,};:‘)=1 is a sequence of points in the open set Q. Furthermore,
suppose that this sequence is bounded away from the boundary of € and that it
has precisely one accumulation point, ag, in 2. We may in fact suppose that the
sequence {a, },_, converges to the point ag in Q. Let (v, ):’:1 denote a sequence of
non-negative real numbers (weights) with £°_ v, < 0.

The set Q' := Q\{a,},_, is open and §(Q") = 6(Q) U {a,},_,-

The following result is proved in [5] for finite sequences and in [1] for
sequences with the properties given above.

PROPOSITION 1. If Q is a bounded hyperconvezr domain in a Banach space
and {an}::() 1S a sequence with the properties given above, then there ezists

g€ PSH(Q) satisfying the following:

(1) gl o i @ mazimal plurisubharmonic function,
(i1) g|n\{ao} 18 continuous,

(iii) g<0on 9,

(iv) limsup__ . 9(2) =0,

(V) y(a,) =1, forn=1,2,....

Remarks. (a) The function g is uniquely determined by the above
properties, and is called the (complez) Green function with logarithmic poles of
density v, at a,.

(b) A domain is called hyperconvez if it admits a negative plurisubharmo—
nic exhaustion function. A function satisfying (iii) and (iv) is a negative ezhaus—
tion function and so hyperconvexity is a necessary condition for the proposition.

(c) The hypothesis that (a,), be bounded away from the boundary is
necessary in order to obtain (iv).
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(d) An important role in the proof of Proposition 1 is played by the
function

i(z) = E1?:1 w, log |z - a, || -

This function is the only known general plurisubharmonic lower estimate for g,
i.e. {< g. An example in [5] shows that in general we have [ < g. If £,; u, =+00
then [(z) =-oco and, consequently, the requirement ¥ ._; v, < 0o is necessary
until new nontrivial lower bounds for g are found.

(e) In general g does not extend continuously to Q. For example if Q is the
ball of radius 2, |ja,| =1/n for n<1 and v, = 1/n? then

9(0) > 1(0) = T2y vy logllay ]l = - Sy {logn /n?} > 00 -
On the other hand
lim inf g(2) < lim g¢(a,) = -
z= n-omw

and ¢ is not continuous at the origin.

In fact g is continuous on € if and only if g(ag) = -00. If g(ay) > —oco then
v, (ag) = 0. Further situations in which v,(ag) =0 are given in [1]. At the point
ag it is clear that g does not have a regular density and in this paper we show
that it is possible that ¢ has a fine density (Definition 3 below) at ag.

The fine (or pluri-fine) topology on an open subset £ of a Banach space is
the weakest topology on Q such that all plurisubharmonic functions on Q are
continuous. Clearly the fine topology is weaker then the given topology on 1. The
notion of a thin set is helpful in discussing the weak topology.

A subset G of Q is said to be thin at pe Q if either p¢ G or there exists U
openin 2, pe U, and h e PSH(f) such that

lim h(z) < h(p).

z »p,zeCG

A subset G of Q is said to be thin if it is thin at every point of 2. With this
concept one easily sees that sets of the form G, with G¢ (the complement of G
in ) thin at p, are a neighbourhood basis at p for the fine topology.

Our next proposition is a generalization of the classical Weiner criterion to
Banach spaces.

PROPOSITION 2. Let Q denote a bounded domain in a Banach space. Then
A CQ 1s thin at the point zy€ AN Q if and only if there exists a strictly decreasing
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null sequence of positive real numbers, (r,),.,, such that B3, Uy;(z) > -o0
where

(i) A;=An{r;>z-z]>r.},
(i1) UAJ. = UAnj =sup{v: ve PSH(Q),v<0onQ, v<-1on 4;}.

Proof If B7_;Uy;(2)>-00 then there exists fj€ PSH(Q), f; <0,
fj<-1on Aj and f;(2) > Ug;(2) - 2-7-1. Tt follows that f; = £7_; f; € PSH(Q)
and

fr(z) > =277 + T7_, Upi(20) -

If J is chosen sufficiently large then fy(zp) > -1. However, lim sup¢_,,cea f7(€) <
< -1and 4 is thin at 2;.

Conversely, if A is thin at z;, then there exists h € PSH(Q) such that

lim SUP ¢-29,€€4 hJ(é) < h(z()) :
Using a truncation argument it is possible to find H € PSH(Q2) such that
lim sup¢_,;g¢ca H(¢) = -00 < H(z)

and, without loss of generality, we may suppose H < 0 on 2. Now choose (7,),,,
a strictly decreasing null sequence, such that

sup{H(¢) : 2o - €l <y} <-27.
Hence

27H(E)<-1 on {€:]z-¢&|<m}nA.

Since A; c {€ : ||lzp - €]l < r;} N A this implies Uyp; > 277 H on  and in particular
Ua;(20) > 277 H(z).
Hence Z}nﬂ UAj(Zo) > H(z) > -oo and this completes the proof. 1

DEFINITION 3. If he PSH(R), Q an open subset of a Banach space, and
p € Q then the fine-density of h at p, 7, (p), is defined as

() = fine limit {(z) / logllz-p}

We now show that it is possible for the (complex) Green function to have a
fine density at the accumulation point of logarithmic poles. In our proposition we
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let |la,|| = 1/n, mainly for the sake of simplicity. It is possible to develop the
method to include more general situations by combining hypothesis involving the
a,’s and the v,’s. An examination of the proof shows that a careful balance has
to be maintained in order to obtain a limit.

THEOREM 4. Let Q be a hyperconver domain of diameter 1 in a Banach
space E, A ={(a'n)'"n)n}n) o, € E, "a*n" =1/n for n>2, v, >0 for all n,
Teg Uy <00 and T g v, logn = 00. Let g denote the mazimal plurisubharmonic
function with logarithmic poles of density v, at a,, for all n.

Suppose also that for each n we can find B,,6, € R™ such that the following
conditions are satisfied:

(l) 21?:2ﬁ7110gn< 0,

(ii) fplogé, — -00 as n— oo,

(iii) (v, logén)/logn — 0 as n— 00.
Then 9,(0) = 0.

Proof Let h(z) = T,=9f,logllz-a,|. Clearly he PSH(Q) and h(0) =
= %o B,log(1/n) > —-co0 by assumption (i).

Let Ey= U, ,B(tn,6,) where B(a,r)={z€E:|z-a|<r}. By
conditions (i) and (ii), we can suppose, without loss of generality, that the balls in
Ey do not overlap. If z€ Ey, say z€ B(ay,,8,,) then h(2) < A, logé,, since Q
has diameter 1 and the terms in h are negative. Thus, by assumption (ii)
lim ;0 zeqy h(2) = -00 < h(0) and the set Ej is thin at 0.

To prove the result it suffices to show lim ,_,q 545, {/(2) / log||z|| } = 0 where

i(2) = T =2 ¥ 10812 - G |-

Let wmz{zEQ:m—i* < ||z||<;i—%}.
Then
I(z) [ 1ogllzll = up {logllz - amll / loglzll} +

+ B ta{108]2 - 0y |/ 108121} + S m o {logllz - enl/ log 2]} -

If z€ wy,, z€ Ey we get

e {10812~ 0]l /108 21} < v {1086 /108 [25]} — 0 2 m— 0

m+3}
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by (iii). Also
1 1 1
B> m ta {10812 - aull / 18120} < Bz tn {108 27 -] /108 [5] |

since [[z-ay [ > |2l - lan |-
Since n > m we have

101 1 1 1 1
o8 [y 4] /108 k) < o8 g i) /108 [y ) <3
for m sufficiently large and so

Za>m U {10812~ ayll [ 10g]121} < 3-Bpsmom — 0 as m — co.

For n < m we have

% nem Um {10812 - &y ]| /108]1211} < Encmvm {10g(lasll - I2l1) /1oglzl } <

SRR (R I
For n < m we have
eft -] et <5

Let N(m) be an increasing sequence of real numbers N(m) < m, such that
1 1 1
’lU(‘ITL) = IOg [m—m] /log [-m—_%-] — 0 as m — o0

and N(m) — oo as m — oo (e.g. N(m) =logm).
Then

% nem Um {10g ]2 - g, ]| [ log 2]} =
= SN im) % {10812 - all / 1081121} + £ N imy<nam % {10811z - a5l / 1og 2 } <

< [2n<N(m) vm} Wy + EN(m)<n<m 3”11.

— 0asm— 0.

Combining the above estimates we get lim,,q .4z, {l(z)/ log|lz||} = 0. Since
1< g this implies lim ,_,¢ ,¢, {g(z)/log [z} = 0 and, as we have shown that E,
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is thin at 0, it follows that 7,(0) = 0.
This completes the proof. 1

EXAMPLE 5. The hypotheses of Theorem 4 are satisfied by the following
sequence (with n sufficiently large):

U, = {n(log n)2(loglog n)}_1
fn = {n(l0gn)" (loglogn) (logloglogn)’} ~*

O = exp{—n(logn)2(loglogn)(logloglog n)a} .
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