EXTRACTA MATHEMATICAE Vol. 8, Ndm. 1, 61 —67 (1993)

Note on some Integral Volterra Equations:
W. OKRASINSKI

Institute of Mathematics, University of Wroclaw, Pl. Grunwaldzki 2/4,
50-384 Wroclaw, Poland and Departamento de Matemdticas, Universidad
de Eztremadura, Avda. de Elvas s/n, 06071 Badajoz, Spain

AMS Subject Class. (1991): 45D05, 45E10. Received May 24, 1993

1. INTRODUCTION

The nonlinear Volterra equation

(1.1) u(z) = fozk(z-s)g(u(s))ds, >0,

has been studied recently with connection to some problems in nonlinear diffusion
and shock-wave propagation. In these problems the kernel & is nonnegative and ¢
is an increasing continuous function such that g(0) = 0. Obviously, u =0 is the
trivial solution to (1.1). From a physical point of view, however, it is especially
interesting to know when (1.1) has a nontrivial solution, i.e., continuous function
u such that u(z) > 0 for z> 0. During the last few years some papers concerning
the existence of nontrivial solutions have been written (see the list of references).
All those papers have as a background Gripenberg’s paper [9]. In that paper
Gripenberg generalized the famous Osgood condition for integral equation of the
type (1.1). This integral condition can be applied to wider classes of kernels k¥ and
nonlinearities g ([5], [6], [7], [9], [10], [11], [12], [13], [14], [15]). However there are
conditions for the existence of nontrivial solutions which have not got an integral
form (8], [16], [17], [19]). In [16] they have the form of function series. To obtain
these conditions it is necessary to assume that the kernel k£ is an integrable
function such that k>0 a.e. and g is a strictly increasing absolutely continuous
function such that ¢(0) =0 and u/g(u) » 0 as u » O+.

In this paper we want to show that conditions presented in [16] can be
generalized to wider classes of kernels k¥ and nonlinearities g.
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2. STATEMENT OF RESULTS
We shall study equation (1.1) assuming that

(k) k:[0,6]— [0,+00], >0, is an integrable function such that K(z) >0
for 2> 0, where K (z) = [ k(s)ds.

(g) g:[0,+00) — {0,+00) is a nondecreasing continuous function such that
9(0) =0, g(z)>0 for >0 and u/g(u)~ 0 as v~ 0+.

If f is a continuous nondecreasing continuous function then we can define
1 . -
fii(y) =min{z: fla)=y} and £7(y) = max{z: flz)=y}.

For a given function h we define the sequence of functions A", n=0,1,..., as
follows: B(z) = z, h"*! = A"k, n=0,1,....

We formulate the following necessary condition

THEOREM 2.1. Let (k) and (g) be satisfied. Let 1 be a continuous function
such that ¢(z) >0 for >0 and lim , 0, {9(z)/¥(z)} < 1. If equation (1.1) has
a nontrivial strictly increasing solution on an interval, then the series

e (-1 -1
(21) 2,56 @/ 9(5)" (@)
is convergent on [0, 8], 6> 0.
Moreover, the following sufficient condition holds.

THEOREM 2.2. Let (k) and (g) be satisfied. Let ¢ be a continuous
nondecreasing function on [0,6g], 6> 0, such that 0 < ¢(z) < g(z) for z€ (0, &)
and z/¢(z) > 0 as u~ 0+. If the series

(2.2 T, K ((609)"(2)/ (570 ) (2)))

is convergent at zg € (0,6p], then equation (1.1) has a nontrivial solution on some
wnterval.

3. SOME PRELIMINARIES
On the basis of results presented in [5] we know:

PROPOSITION 3.1. If equation (1.1) has a nontrivial solution then it is
nondecreasing function.

An integration by parts gives the following:
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PROPOSITION 3.2. If u is a nontrivial solution to (1.1) then u is an
absolutely continuous function such that

z
u(z) = fo K(z -s)d(gou)(s)
on [0,8], 6> 0.
We can formulate the corollary.

COROLLARY 3.1. Let (k) and (g) be satisfied. Let k> 0 a.e. or g is strictly
increasing. If (1.1) has a nontrivial solution then u is strictly increasing.

Remark 3.1. For every €€ (0,1) the equation
z

(3.1) u (z) =€z + fo k(z-s)g(u(s))ds
has a unique strictly increasing absolutely continuous solution u. on an interval
[0,61], where &, >0 is independent of €. Moreover, u,, < u., for € < €5 (see [16]).

We can prove the following lemma:

LEMMA 3.1. Let €€[0,1). If u. is the nontrivial strictly increasing solution
to (3.1) then the inverse function u;l satisfies the equation

z

(3.2) z=eul(z) + [ K(ul(z) -usi(s) )dg(s)
forze[0,uc(6;)].

Proof. Let € >0 and u, be the solution to (3.1) mentioned in Corollary 3.1
and Remark 3.1. Since %, is absolutely continuous and strictly increasing then
U (7)
u(e) = ez + [ k(z - ugl(s) )(ugl(s) ) g(s))ds.

Integrating by parts we obtain
U ()
ue(z) = ez + f) K(z - ul(s))dg(s)) .
Substituting u;1(z) for z gives (3.2). 1

Remark 3.2. The function G(z,s)= K (u;l(z) - u;l(s)) is decreasing
with respect to s. Moreover, G(z,0) = K (u71(z) ) and G(z,z) = 0.
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4. PROOF OF THE NECESSARY CONDITION
First we prove the following lemma.

LEMMA 4.1. Let ¢ be o continuous function such that ¥(z) >0 for >0

and Lim .0, {g9(z)/¥(z)} < 1. If equation (1.1) has the nontrivial strictly
increasing solution ug, then

- -1
(41) u§i(z) > KT'(2/9(2)) + u5'(97(2)
on an interval [0,6q], 69> 0.
Proof. Let us note that for the proof of (4.1) it is sufficient to show that
-1
(4.2) Go(z, 91 (2)) > 2/¥(2)

for z€ [0, 8] (8o > 0). Suppose (4.2) does not hold. Hence there exists a sequence
T, ~+ 0 as u— oo such that

© (4.3) Go(2n, 97 (24)) < Zo/¥(2,) -

From (3.2) we obtain

-1
9: (2a) z
n
(4.4) z= [, Colan)dals) + [ 7 Golens)dg(s).
9: (z5)
Since G is decreasing with respect to s, we get

(4.5) Zn < K(uX(2a) ) 9(97(52)) + 9(2a) Go(2n, 97 (20)) -
By (4.3) and (4.5) we obtain ‘
2o < K(ug'(2,) ) 2n + T2 9(z0)/ ¥(20) -
From the last inequality we get
(4.6) 1< K(ug'(2n) ) + 9(2n)/ ¥(20) -

Since Iim,_q,{9(z)/%(z)} <1 then g¢(z)/¥(z)<1-1n (n€(0,1)) for z>0
sufficiently small. Hence we have

(4.7) 1< K(ugh(zn) ) +1-17
for n>mng. If n > oo then K(ugl(z,)) - 0. From (4.7) we get contradiction. H

Proof of Theorem 2.1. Let 1 satisfy the assumptions of the theorem. If
is the strictly increasing nontrivial solution to (1.1) then inequality (4.1) holds.
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We can iterate (4.1). After n iterations we get
(€8 wt@)> 5K @6 @) + w6 (@)

on [0,8,]. Without loss of generality we can assume g;l(z) <z on (0,8]. I
n - oo then from (4.8) we get (2.1). 1

5. PROOF OF THE SUFFICIENT CONDITION

The following lemma is true:

LEMMA 5.1. Let ¢ be a mondecreasing continuous function on [0,6],
6o > 0, such that z< ¢(z) < g(z) for z€(0,8y) and z/¢(z)~ 0 as z - O+. Let
€>0. Ifu, is the solution to (3.1) then

-1 - -1

(5.1) u(z) < K; (z/4(z)) + u'( (g1 04)(2))
for z€[0,uc(61)] (ue(61) < by for €€(0,1)).

Proof. On the basis of (3.2) we get

(97'2¢) (2)
(5.2) z > fo Ge(z,s)dg(s) .

By Remark 3.2 and properties of ¢ we obtain

(91%09) (2)
(5.3) S, Gdz.5)dg(s) > () Gc(z,(s109)())

Using (5.2) and (5.3) gives
(5.4) 2/$(z) > Ge(z,(9709)(z)) -
From (5.4) we obtain (5.1). 1

Proof of Theorem 2.2. Let ¢ be given on [0,6p]. Let {u.:e€(0,1)}
denote the family of solutions to (3.1) on [0, §;] mentioned in Remark 3.1. Fixing
€ we can iterate the inequality (5.1). After n iterations we get

(55) ul(e) < T K7 (6706)(2)/8(sT08) () + ul( (57%06)™ (=)

on [0,u.(6;)]. Since (9T #)(z) <z for >0 then using similar arguments as
in [16] we get
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(5.6) u;l(z) < F(z)

on [0,uc(6;)], where

Fz) = 3 K (67%09)(0)]/ $(67109)"(2))

is well defined for z < zy (see [17]). Let us note that lim , g, F(z) = 0. We can
find a strictly increasing continuous function F such that F < F. Hence we get

(5.7) ue(z) < Fl(z)

for z€ [0,6;], where F ! is the inverse function to F. If € » 0+ then the sequence
u, tends to nontrivial solution u of (1.1) because u> F ™ on [0,4;] (for details
see [16]). The theorem is proved. |
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