The Positive Schur Property in Banach Lattices

JOSÉ A. SÁNCHEZ H.1

Dpto. de Matemáticas, Fac. Ciencias, Univ. Concepción, Casilla 3-C, Concepción, Chile

AMS Subject Class. (1980): 46B30, 47B55

Received April 13, 1992

For notations and terminology concerning Banach lattices, we refer the reader to [1], [4] and [5].

For a Banach lattice E we denote its norm dual by E'. The absolute weak topology on E, $|\sigma|(E,E')$ is the locally convex-solid topology generated by the family of Riesz seminorms $\{p_{x'}: x' \in E'\}$, where $p_{x'}(x) = |x'|(|x|)$ for each $x \in E$.

Let E be a Banach lattice. Following [3], we say that a set $A \subset E$ is L-weakly compact if A is norm bounded and $||y_n|| \to 0$ as $n \to \infty$ whenever $\{y_n\}_n$ is a disjoint sequence in the positive part of the solid hull of A. It is well known that every L-weakly compact subset of a Banach lattice is relatively weakly compact (see [3]), and it is also known that a norm bounded subset of an abstract L-space is relatively weakly compact if and only if is L-weakly compact (see, e.g. [1], Theorem 21.10).

Recall that a Banach space is a Schur space if weakly null sequences are norm null. In this note we give a characterization of Banach lattices on which every positive weakly null sequence is norm null.

Let E be a Banach lattice; we say that E has the positive Schur property if every positive weakly convergent sequence in E is norm convergent.

Every Schur lattice has the positive Schur property.

Let E be a Banach lattice E with the Dunford-Pettis property (i.e., $x_n \to 0$ $\sigma(E, E')$ and $x_n' \to 0$ $\sigma(E', E'')$ imply $x_n'(x_n) \to 0$) and such that E' contains no lattice isomorph to ℓ_1 . Then if (x_n) is a positive weakly convergent to zero sequence, by [2, Corollary 2.6] the sequence (x_n) is norm null provided $\lim u_n(x_n) = 0$ for each norm bounded disjoint sequence (u_n) in E'_+ , now since E' contains no lattice isomorph to ℓ^1 , norm bounded disjoint sequences in E' are weakly null, we conclude that E has the positive Schur property. In particular

¹ Partially supported by Fondecyt, Grant 89-655.

every abstract L-space lattice has the positive Schur property. Recently Wnuk [6] showed examples of Banach lattices with the positive Schur property and which are not isomorphic to any abstract L-space.

Also Wnuk noticed that, if E has the positive Schur property, then E is weakly sequentially complete and every infinite dimensional sublattice of E contains a lattice isomorph to ℓ_1 .

THEOREM 1. Let E be a Banach lattice. Then the following statements are equivalent.

- (a) E has the positive Schur property.
- (b) Every weakly convergent sequence of pairwise disjoint elements of E is norm convergent.
- (c) Every relatively weakly compact subset of E is L-weakly compact.

COROLLARY 2. Let E be a Banach lattice. Then the following statements are equivalent.

- (a) E is a Schur lattice.
- (b) E is a discrete Banach lattice with order-continuous norm and every relatively weakly compact subset of E, is L-weakly compact.
- (c) E has the positive Schur property lattice and every $\sigma(E, E')$ -converging sequence in E is $|\sigma|(E, E')$ -converging.

Recall the following notions introduced in [3]: let E be a Banach lattice and X be a Banach space; an operator T from E into X is called M—weakly compact if T maps norm bounded disjoint sequences into norm convergent sequences; an operator $T: X \longrightarrow E$ is called L—weakly compact if T maps norm bounded sets of X into L—weakly compact subsets of E. It is known that T is M—weakly compact (resp. L—weakly compact) if and only if its adjoint T' is L—weakly compact (resp. M—weakly compact); moreover M—weakly compact operators are weakly compact. See [3]. Let E and F be two Banach spaces. Hence an operator $T: E \longrightarrow F$ is called a Dunford—Pettis operator if T carries weakly convergent sequences onto norm convergent sequences.

THEOREM 3. Let E be a Banach lattice, then the following statements are equivalent:

- (a) E' has order-continuous norm.
- (b) Every Dunford-Pettis operator T from E into an arbitrary Banach space is

M-weakly compact.

- (c) Every compact operator T from E into an arbitrary Banach space is M-weakly compact.
- (d) Every positive operator T from E into an abstract L-space is M-weakly compact.

The next result gives a simple characterization of Banach lattices for which weakly compact operator are M-weakly compact.

THEOREM 4. Let E be a Banach lattice. Then the following statements are equivalent:

- (a) E' has the positive Schur property.
- (b) For each Banach space F, every weakly compact operator $T: E \longrightarrow F$ is M-weakly compact.

L-weakly compact operators in Banach spaces are weakly compact. The next result shows that the converse is also true for Banach spaces X such that X' is a Schur space.

THEOREM 5. Let X be a Banach space. The following statements are equivalent.

- (a) X' is a Schur space.
- (b) For each Banach lattice E with order continuous norm, every weakly compact operator $T: X \longrightarrow E$ is L-weakly compact.

REFERENCES

- 1. ALIPRANTIS, CH., BURKINSHAW, O., "Locally Solid Riesz Spaces", Academic Press, New York, 1978.
- 2. DODDS, P., FREMLIN, H., Compact operators in Banach lattices, Israel J. Math. 34(4), (1979), 287-320.
- MEYER-NIEBERG, P., Über Klassen schwach kompacter operatoren in Banachver bänden, Math. Z. 138 (1974), 145-159.
- SCHAEFFER, H., "Banach Lattices and Positive Operators", Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- SÁNCHEZ, J., Operadores en retículos de Banach, Tesis, Universidad Complutense de Madrid, España, 1985.
- WNUK, W., Some characterization of Banach lattices with the positive Schur property (preprint).