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For notations and terminology concerning Banach lattices, we refer the
reader to [1], [4] and [5].

For a Banach lattice E we denote its norm dual by E’. The absolute weak
topology on E, |o|(E, E’) is the locally convex—solid topology generated by the
family of Riesz seminorms {p, : '€ E’}, where p.(z) = |z’|(|z|) for each z € E.

Let E be a Banach lattice. Following [3], we say that a set ACE is
L—weakly compact if A is norm bounded and ||y,|| — 0 as n — oo whenever
{a}n is a disjoint sequence in the positive part of the solid hull of 4. It is well
known that every L—weakly compact subset of a Banach lattice is relatively
weakly compact (see [3]), and it is also known that a norm bounded subset of an
abstract L—space is relatively weakly compact if and only if is L—weakly
compact (see, e.g. [1], Theorem 21.10).

Recall that a Banach space is a Schur space if weakly null sequences are
norm null. In this note we give a characterization of Banach lattices on which
every positive weakly null sequence is norm null.

Let E be a Banach lattice; we say that E has the positive Schur property if
every positive weakly convergent sequence in E is norm convergent.

Every Schur lattice has the positive Schur property.

Let E be a Banach lattice E with the Dunford—Pettis property (i.e.,
2, — 0 o(E,E’) and g,/ — 0 o(E’,E”) imply 2,'(z,)— 0) and such that E’
contains no lattice isomorph to 4. Then if (z,) is a positive weakly convergent
to zero sequence, by [2, Corollary 2.6] the sequence (z,) is norm null provided
lim u, (%,) = 0 for each norm bounded disjoint sequence (u,) in E; , now since
E’ contains no lattice isomorph to £!, norm bounded disjoint sequences in E’ are
weakly null, we conclude that E has the positive Schur property. In particular

1 partially supported by Fondecyt, Grant 89 -655.

161



162 JOSE A. SANCHEZ H.

every abstract L-—space lattice has the positive Schur property. Recently Wnuk .
[6] showed examples of Banach lattices with the positive Schur property and
which are not isomorphic to any abstract L—space.

Also Wnuk noticed that, if £ has the positive Schur property, then E is
weakly sequentially complete and every infinite dimensional sublattice of E
contains a lattice isomorph to ;.

THEOREM 1. Let E be a Banach lattice. Then the following statements are
equivalent.
(a) E has the positive Schur property.
(b) Every weakly convergent sequence of pairwise disjoint elements of E is norm
convergent.
(c) Every relatively weakly compact subset of E is L—weakly compact.

COROLLARY 2. Let E be a Banach lattice. Then the following statements
are equivalent.
(a) E is a Schur lattice.
(b) E is a discrete Banach lattice with order—continuous norm and every relatively
weakly compact subset of E, is L—weakly compact.
(¢c) E has the positive Schur property lattice and every o(E,E’)—converging
sequence in E is |g|(E, E’)—converging.

Recall the following notions introduced in [3] : let E be a Banach lattice and
X be a Banach space; an operator T from FE into X is called M—weakly compact
if T maps norm bounded disjoint sequences into norm convergent sequences; an
operator T': X — FE is called L—weakly compact if 7 maps norm bounded sets
of X into L—weakly compact subsets of E. It is known that T is M—weakly
compact (resp. L—weakly compact) if and only if its adjoint 7" is L—weakly
compact (resp. M—weakly compact); moreover M—weakly compact operators are
weakly compact. See [3]. Let E and F be two Banach spaces. Hence an operator
T:FE — Fis called a Dunford — Pettis operator if T carries weakly convergent
sequences onto norm convergent sequences.

THEOREM 3. Let E be a Banach lattice, then the following statements are
equivalent:
(a) E’ has order—continuous norm.
(b) Every Dunford— Pettis operator T from E into an arbitrary Banach space is
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M—weakly compact.
(c) Every compact operator T from E into an arbitrary Banach space is
M —weakly compact. ,

(d) Every positive operator T from E into an abstract L—space is M—weakly
compact.

The next result gives a simple characterization of Banach lattices for which
weakly compact operator are M—weakly compact.

THEOREM 4. Let E be a Banach lattice. Then the following statements are
equivalent: ’
(a) E’ has the positive Schur property.
(b) For each Banach space F, every weakly compact operator T:E— F is
M—weakly compact.

L—weakly compact operators in Banach spaces are weakly compact. The
next result shows that the converse is also true for Banach spaces X such that X’
is a Schur space.

'THEOREM 5. Let X be a Banach space. The following statements are
equivalent.
(a) X’ is a Schur space.
(b) For each Banach lattice E with order continuous norm, every weakly compact
operator T:X— E is L—weakly compact.
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