Dowker-Type Theorems in Finite Dimensional Spaces

MARIANO RODRÍGUEZ-ARÍAS FERNÁNDEZ

Dpto. de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain

AMS Subject Class. (1991): 52A20, 52A27, 52A15. Received April 20, 1993

INTRODUCTION

Let C be a subset of a metric space. We shall say that C is a convex body if it is a compact convex set with a non-empty interior.

In \mathbb{R}^m with the norm induced by the usual scalar product, there are some estimators, not necessarily a metric, of "the distance" between convex bodies. In what follows d shall be one of those estimator functions.

For $n = m + 1$, $m + 2$, ... let \mathcal{P}_n be the set of all convex polytopes having at most n vertices. Given a convex body C we define $\mathcal{P}_n^i(C)$ to be the set of polytopes of \mathcal{P}_n contained in C and let similarly $\mathcal{P}_n^e(C)$ denote the set of polytopes of \mathcal{P}_n containing C. We shall write \mathcal{P}_n^i, \mathcal{P}_n^e instead of $\mathcal{P}_n^i(C)$, $\mathcal{P}_n^e(C)$.

Let $\delta : \mathbb{N} \rightarrow \mathbb{R}$ the function defined by $\delta(n) = \inf \{d(C, P) : P \in \mathcal{P}_n(C)\}$, where C is a fixed convex body. In the same way shall be defined the functions $\delta^e(n)$ and $\delta^i(n)$, when $P \in \mathcal{P}_n^e(C)$, $\mathcal{P}_n^i(C)$ respectively. When referring to the three functions at one time, they will be called $\delta(n)$.

Given C and P, two arbitrary convex bodies, let us define the functions:

$$\rho_1(C, P) = \sup_{z \in C} \inf_{y \in P} |z - y| \quad \text{and} \quad \rho_2(C, P) = \rho_1(P, C).$$

If it is clear which are the convex bodies we refer to, we shall denote these functions as ρ_1 and ρ_2.

Some classical theorems of Dowker [1] about packing and covering problems promoted the study of the convexity of this type of functions.

Eggleston in [2], while working on those topics, constructed a convex body C in \mathbb{R}^2 for which the $\delta(n)$ functions, when $d(C, P) = \delta^e(C, P) = \rho_1 + \rho_2$, are not convex. On the other hand Gruber [3] leaves it open the question of whether or not the $\delta(n)$ functions are convex, when $d(C, P) = \delta^H(C, P) = \max \{\rho_1, \rho_2\}$.
the Hausdorff distance.

In this paper we answer this question negatively. We shall prove that for the Eggleston’s polygon the $\delta(n)$ functions are not convex. We will also construct in \mathbb{R}^m, $m \geq 2$, a convex body for which the $\delta(n)$ functions are not convex, when $d(C,P) = f(\rho_1, \rho_2)$, where f is a function belonging to $\Omega = \{ f : \mathbb{R}^+ \times \mathbb{R}^+ \cup \{(0,0) \rightarrow \mathbb{R} : f(x,0) = x, f(0,y) = y, \max \{z,y\} \leq f(x,y) \}$.

The functions $f_\lambda(x,y) = (x^\lambda + y^\lambda)^{1/\lambda}$, $\lambda \in (0,\infty)$ and $f_\alpha(x,y) = \max \{z,y\}$ belong to Ω.

RESULTS

The case \mathbb{R}^2

The convex body C fixed in Eggleston’s example, is a regular $2r$ sided polygon of side-length k, and let X_{2r} denote it. We shall see that for X_{2r} the $\delta(n)$ functions are not convex when $f \in \Omega$.

Lemma 1. There exists $W \in \mathcal{P}_r^i$ and $Z \in \mathcal{P}_r^c$ such that

$$
\rho_1(X_{2r},W) = K \sin(\pi/2r),
$$

(1)

$$
\rho_2(X_{2r},Z) = \frac{k}{2} \tan(\pi/r).
$$

(2)

Proof. To prove (1) let W be the polygon formed by joining r alternate vertices of X_{2r}. For (2) we take Z, a polygon formed by producing r alternate sides of X_{2r}. \hfill \Box

Now we take r large enough to let us construct two polygons in which the following lemma is based on.

Lemma 2. For r large enough, the following is true:

$$
\delta(2r-1) \geq K \sin(\pi/r) / \{4[1 + \cos^2(\pi/2r)]\} = \beta.
$$

(3)

Proof. We begin by constructing two regular polygons of $2r$ sides, X' and X'' such that $X' \subset X_{2r} \subset X''$. If ℓ_i', ℓ_i, ℓ_i'' are the sides of X', X_{2r}, X'' respectively, then the polygons will verify that, for each i, ℓ_i', ℓ_i, ℓ_i'' are parallel and β denotes the distance between ℓ_i' and ℓ_i, and between ℓ_i'' and ℓ_i.

Take a vertex ℓ_i'' of X'' formed by the sides ℓ_i'' and $\ell_i''_{i+1}$, and construct the triangle C_i joining ℓ_i'' to the mid-points of ℓ_i'' and $\ell_i''_{i+1}$, which shall be denoted by h_i and h_{i+1} respectively. These triangles have disjoint interiors.
The value of β has been chosen so that the polygon formed by joining h_i on adjacent sides is also the polygon formed by the bisectors of the angles $\angle(L_i, L_i')$.

Let L be a polygon such that $d(X_{2r}, L) < \beta$ and let v_i be the vertex of X_{2r} contained in the interior of C_i. The open ball $B(v_i, \beta) \subset \text{int}(C_i)$. From the definition of d, there exists $f \in \Omega$ such that $d(X_{2r}, L) = f(\rho_1(X_{2r}, L), \rho_2(X_{2r}, L))$ therefore $f(\rho_1(X_{2r}, L), \rho_2(X_{2r}, L)) < \beta$ from where

(a) $\rho_1(X_{2r}, L) < \beta \implies$ there exists $x \in L$ such that $x \in B(v_i, \beta) \subset \text{int}(C_i)$,
(b) $\rho_2(X_{2r}, L) < \beta$, therefore $L \subset \mathcal{X}$.

From (a) we conclude that the straight line joining h_i and h_{i+1} meets in $	ext{int}(L)$, and from (b) L has at least one vertex in each $\text{int}(C_i)$. Therefore L has at least $2r$ vertices. This proves boundary (3).

To finish the proof, one must bear in mind the inequalities $\delta(n) \leq \delta^i(n)$ and $\delta(n) \leq \delta^c(n)$, and suppose that $\delta(n)$ is a convex function. Then using the lemmas 1, 2 and considering that a convex function $g(n)$ of the integral variable n, such that $g(p) = 0$, verifies that $g(p-r) \geq r g(p-1)$ $(r = 1, \ldots, p-1)$, the following inequalities are true

$$K \sin(\pi/2r) = \rho_1(X_{2r}, W) \geq \delta^i(r) \geq \delta(r) \geq r \delta(2r-1) \geq$$
$$\geq r K \sin(\pi/r)/\{4[1 + \cos^2(\pi/2r)]\}. \tag{4}$$

But inequality (4) is false if r is large. Similarly, it may be shown that $\delta^i(n)$ and $\delta^c(n)$ are not convex.

The case \mathbb{R}^3

We are going to construct in \mathbb{R}^3 a polytope with $4r$ vertices for which the $\delta(n)$ functions, when $d(C, P) = f(\rho_1, \rho_2)$, and $f \in \Omega$, are not convex. This polytope shall be denoted by X_{4r} and will be constructed based on X_{2r}. Through induction on m, a convex body in \mathbb{R}^m, for which the $\delta(n)$ functions, when $d(C, P) = f(\rho_1, \rho_2)$ and $f \in \Omega$, are not convex.

Definition 1. We say that $A \subset \mathbb{R}^n$ is a *straight polytope* with $n-1$ dimensional bases and height ξ, if there exists a hyperplane H in \mathbb{R}^n which contains a polytope B such that $A = \{x + \lambda u : x \in B \text{ and } |\lambda| \leq \xi\}$, where u is a vector of norm 1, orthogonal to H.

We consider in \mathbb{R}^3 the $z = 0$ plane and X_{2r} contained in it. We are going to work with the polytope $X_{4r} = \{z + \lambda u : z \in X_{2r} \text{ and } |\lambda| \leq \xi\}$, when $u = (0, 0, 1)$.
Lemma 3. There exists $W^* \in \mathcal{P}_{2\xi}$ and $Z^* \in \mathcal{P}_{2\xi}$ such that

$$\rho_1(X_{4r}, W^*) = K \sin(\pi/2r),$$

$$\rho_2(X_{4r}, Z^*) = \frac{K}{2} \tan(\pi/r).$$

Proof. To prove (5), construct a straight polytope W^* with base W (see (1)) and height ξ. To demonstrate (6), construct a different straight polytope Z^* with base Z (see (2)) and height ξ.

In the proof of the following inequality a family of convex bodies appears. From a certain large value of ξ, it is possible to affirm that each convex body contains a ball with centre at a vertex of X_{4r} and radius β, so that the interiors of the convex bodies are disjoint.

Lemma 4.

$$\delta(4r - 1) \geq K \sin(\pi/r)/\{4[1 + \cos^2(\pi/2r)]\} = \beta.$$

Proof. Construct the straight polytopes $X' = \{z + \lambda u : z \in X_r, |\lambda| \leq \xi - \beta\}$ and $X'' = \{z + \lambda u : z \in X''_r, |\lambda| \leq \xi + \beta\}$, where X'_r and X''_r are the X' and X'' constructed in the proof of Lemma 3.

We shall construct a family of $4r$ convex bodies with disjoint interiors, and such that each open ball with centre at a vertex of X_{4r} and radius β is contained inside one of the convex bodies. Therefore, reasoning as in the proof of Lemma 2, any polytope L such that $d(X_{4r}, L) < \beta$ would have at least $4r$ vertices. This proves (7).

The convex bodies are defined in the following way: let C_i be the tetrahedron whose vertices are u^i, a vertex of X'', and the mid-points on u^i edges. We can assert that $B(u^i, \beta) \subset \text{int}(C_i)$ if ξ is large, and that the interiors of C_i are disjoint.

For $n = 4r$, $\delta(n) = 0$, if $\delta(n)$ was convex, reasoning as we did at the end of the case \mathbb{R}^2, one would obtain the inequality

$$K \sin(\pi/2r) \geq 2r K \sin(\pi/r)/\{4[1 + \cos^2(\pi/2r)]\}$$

which is false for large r. Then $\delta(n)$ cannot be convex. Analogously, it can be shown that $\delta^i(n)$ and $\delta^e(n)$ are not convex.

Remarks. An example in \mathbb{R}^m can be constructed by induction.
REFERENCES

