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With the invention of high—speed computers large—scale problems from
diverse fields as economics, agriculture, military planning, and flows in networks,
became at least potentially solvable, being a lot of them extremum problems.

‘The great importance of extremum problems in applied mathematics leads
us to the general study of extremum of functions from R™ to R. It is not easy to
know the extremum points, neither for differentiable functions, because it is not
always possible to solve the equation Vf(z)=0 to calculate critical points.
Convex functions have a particularly simple extremal structure [2], and there
exist algorithms to calculate extremum points, supposing its existence. However it
is not easy to prove the existence of extremum even in the case of convex
differentiable functions [2], [3]. Therefore it is very important to give sufficient
conditions to guarantee this existence.

Given a strictly convex function f from R" to R, we prove in this paper the
existence of a unique global minimum point for f if the following condition is

verified:
limy , g X', 0%; >0 for i=1,..,n. (1)

This proof is founded on the continuation method and the method can serve
to determinate numerically that point as we have showed [5], [6]; see also [1]
and [7].

THEOREM. Let f:R" — R, fe Ca(IR") be a strictly conver function
verifying (1). Then there ezists a unique minimum point for f.

1 This paper is to appear in Applied Mathematics and Computation.
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