The Space of Compact Operators as an M-Ideal in its Bidual

T.S.S.R.K. RAO

Indian Statistical Institute, R.V. College P.O.,
Bangalore 560059, India, e-mail:TSS@isibang.ernet.in

AMS Subject Class. (1980): 47D15

Received March 18, 1993

INTRODUCTION.

A Banach space X is said to be an M-ideal in its bidual if the canonical decomposition $X^{***}=X^*\oplus X^{\perp}$ is an ℓ^1 -direct sum. These spaces enjoy some remarkable topological properties. For example, for any such X, X^* has the Radon Nikodym property [9] and X has the Pełczyński property ($\mathscr U$) [7] and X is weakly compactly generated [5].

Harmand and Lima [9] have proved that for a reflexive Banach space X, if $\mathcal{K}(X)$ the space of compact operators is an M-ideal in $\mathcal{L}(X)$ the space of bounded operators then $\mathcal{L}(X)$ is indeed the bidual of $\mathcal{K}(X)$ and hence $\mathcal{K}(X)$ is an M-ideal in its bidual. This result has recently been extended in [4] to obtain the same conclusion for $\mathcal{K}(X,Y)$ when X and Y are reflexive Banach spaces and $\mathcal{K}(X,Y)$ is an M-ideal in $\mathcal{L}(X,Y)$.

In this paper we exhibit several classes of Banach spaces for which $\mathcal{K}(X,Y)$ is an M-ideal in its bidual so that $\mathcal{K}(X,Y)$ enjoys the nice topological properties some of which have been mentioned above. See also [14].

We refer the reader to [2] for relevant definitions and results of M-structure theory that we will be using here and the forth coming monograph [10] and its exhaustive bibliography for examples and properties of Banach spaces that are M-ideals in their biduals.

We shall be repeatedly making use of the following theorem where part A) has been proved in [9] and part B) very recently in [12].

THEOREM. Let X be a Banach space.

- A) If X is an M-ideal in its bidual then for any closed subspace $Y \subset X$, Y is an M-ideal in its bidual.
 - B) If X is such that every separable Banach subspace of X is an M-ideal in

its bidual then X is an M-ideal in its bidual.

MAIN RESULTS.

Since X^* and Y are isometric to subspaces of $\mathcal{K}(X,Y)$, by A) of the above theorem we see that for $\mathcal{K}(X,Y)$ to be an M-ideal in its bidual it is necessary that both X^* and Y be M-ideals in their biduals and appealing to Corollary 3.7 of [9], as was done in [9] we conclude that it is necessary that X is reflexive and Y is an M-ideal in its bidual.

We first look at the situation when X and Y are reflexive and present an argument that gives a simple geometric proof of the main result of [4].

PROPOSITION 1. Suppose X and Y are reflexive Banach spaces and $\mathcal{K}(X,Y)$ is an M-ideal in $\mathcal{L}(X,Y)$ then $\mathcal{L}(X,Y)$ is the bidual of $\mathcal{K}(X,Y)$.

Proof. By hypothesis we have

$$\mathscr{L}(X,Y)^* = \mathscr{K}(X,Y)^* \oplus_1 \mathscr{K}(X,Y)^{\perp}.$$

However since functionals in the unit ball of $\mathcal{K}(X,Y)^*$ determine the norm of any operator we conclude that the canonical embedding of $\mathcal{L}(X,Y)$ into $\mathcal{K}(X,Y)^{**}$ is an isometry. That this isometry is onto follows from the results of Feder and Saphar [6].

THEOREM 1. Suppose that X and Y are reflexive Banach spaces and $\mathcal{K}(X,Y)$ is an M-ideal in $\mathcal{L}(X,Y)$ and suppose further X has the compact approximation property then for any closed subspace $Z \subset Y$, $\mathcal{K}(X,Z)$ is an M-ideal in $\mathcal{L}(X,Z)$ and dually if Y has the compact approximation property then for any closed subspace $M \subset X$, $\mathcal{K}(X/M,Y)$ is an M-ideal in $\mathcal{L}(X/M,Y)$.

Proof. Since X and Y are reflexive it follows from the results of [6] that

$$\mathcal{K}(X,Y) \subset \mathcal{K}(X,Y)^{**} \subset \mathcal{L}(X,Y).$$

From the hypothesis we known that $\mathcal{K}(X,Y)$ is an M-ideal in its bidual.

Since $\mathcal{K}(X,Z) \subset \mathcal{K}(X,Y)$ we conclude that $\mathcal{K}(X,Z)$ is an M-ideal in its bidual. Now since X has the compact approximation property, invoking Corollary 1.3 of [8] we get that $\mathcal{K}(X,Z)^{**} = \mathcal{L}(X,Z)$ and hence $\mathcal{K}(X,Z)$ is an M-ideal in $\mathcal{L}(X,Z)$.

To see the dual statement we observe first that since Y is reflexive, Y^* has the compact approximation property and the map $T \longrightarrow T^*$ is an onto isometry

from the operator spaces $\mathcal{K}(X/M,Y)$ ($\mathcal{L}(X/M,Y)$) and $\mathcal{K}(Y^*,M^{\perp})$ ($\mathcal{L}(Y^*,M^{\perp})$) therefore the conclusion follows from the first part of this theorem and this observation.

COROLLARY. Let X be reflexive and $\mathcal{K}(X)$ an M-ideal in $\mathcal{L}(X)$ then for any $Z \subset X$, $\mathcal{K}(X,Z)$ is an M-ideal in $\mathcal{L}(X,Z)$ and $\mathcal{K}(X|Z,X)$ is an M-ideal in $\mathcal{L}(X|Z,X)$.

Proof. It follows from Lemma 5.1 of [9] that X has the compact approximation property.

Remark. It should be noted that these conclusion can also be drawn from a more general approach involving properties of compact operator spaces as M-ideals, as was done in Proposition 2.9 of [12].

From now on we assume that Y is a non-reflexive space that is an M-ideal in its bidual and X is a reflexive Banach space. Note that we still have from the results of Feder and Saphar [6]

$$\mathcal{K}(X,Y)^{**}\subset \mathcal{L}(X,Y^{**}).$$

Let us also note here that $\mathscr{L}(X,Y^{**})$ is isometric to $\mathscr{L}(Y^{*},X^{*})$ by the map $T \longrightarrow T^{*}|Y^{*}$ (this is true for any Banach spaces X and Y).

PROPOSITION 2. Let Y be such that for all Banach space Z, $\mathcal{K}(Z,Y)$ is an M-ideal in $\mathcal{L}(Z,Y)$ then for any reflexive Banach space X, $\mathcal{K}(X,Y)$ is an M-ideal in its bidual.

Proof. The class of Banach spaces Y described above is the so called M_{∞} spaces studied in [13], [10] (Y is non-reflexive when it is infinite dimensional). It follows from the special compact approximation of the identity enjoyed by these spaces (see [10] Chapter 6) that for any such Y, $\mathcal{K}(Z,Y)$ is also an M-ideal in $\mathcal{L}(Z,Y^{**})$.

Hence when X is a reflexive Banach space from the results of Feder and Saphar alluded to before we have

$$\mathcal{K}(X,Y) \subset \mathcal{K}(X,Y)^{**} \subset \mathcal{L}(X,Y^{**})$$

and hence $\mathcal{K}(X,Y)$ is an M-ideal in its bidual.

Remark. It is known that the class of M_{∞} spaces is not closed under subspaces, however if $Y \in M_{\infty}$ and $Z \subset Y$ is a closed subspace then since $\mathcal{K}(X,Z)$

 $\subset \mathcal{K}(X,Y)$ we conclude that $\mathcal{K}(X,Z)$ is an M-ideal in its bidual for such a Z and for any reflexive Banach space X.

The authors in [12] study a class of Banach spaces closely related to the M_{∞} spaces. These are Banach spaces Y with the property that $\mathcal{K}(\ell^1, Y)$ is an M-ideal in $\mathscr{L}(\ell^1, Y)$. Our final result concerns this class.

THEOREM 2. Let Y be a Banach space such that Y has the compact metric approximation property and $\mathcal{K}(\ell^1, Y)$ is an M-ideal in $\mathcal{L}(\ell^1, Y)$ then for any reflexive Banach space X, $\mathcal{K}(X, Y)$ is an M-ideal in its bidual.

Proof. In view of B) of the Theorem quoted above, we only need to show that every separable subspace S of $\mathcal{K}(X,Y)$ is an M-ideal in its bidual. Let $S \subset \mathcal{K}(X,Y)$, S a separable subspace. W.l.o.g. assume that $S \subset \mathcal{K}(X,Z)$ where $Z \subset Y$ and Z is a separable Banach space. Since the space Y is an M-ideal in its bidual ((a) of Theorem 2.12 [12]) it is weakly compactly generated and hence by a result of Amir and Lindenstrauss [1], there is a separable subspace Z' of Y which is 1-complemented in Y such that

$Z \subset Z' \subset Y$.

Note that Z' has now the metric compact approximation prperty and $\mathcal{K}(\ell^1, Z')$ is an M-ideal in $\mathcal{L}(\ell^1, Z')$, (see [11]). Therefore by c) Theorem 2.12 [12] we get that Z' is in the class M_{0} . Hence by the remark made above we conclude that $\mathcal{K}(X,Z)$ is an M-ideal in its bidual.

There is a natural way of generating more examples of this class we mention without proof that if $\{Y_{\alpha}\}$ is a family of Banach spaces such that $\mathcal{K}(X,Y_{\alpha})$ is an M-ideal in its bidual then $\mathcal{K}(X,\Theta_{c_0}Y_{\alpha})$ is an M-ideal in its bidual.

From what we saw above for reflexive spaces with the compact approximation property, the space of compact operators is an M-ideal in the bidual is equivalent to the space of compact operator being an M-ideal in the space of bounded operator. It is well known (see [10]) that for $X = L^p[0,1]$, $p \neq 2$, K(X) is not an M-ideal in L(X) and hence K(X) is not an M-ideal in its bidual. So by taking $Y = X \circledast_{0} c_0$ we get a non-reflexive Banach space that is an M-ideal in its bidual for which K(X,Y) is not an M-ideal in its bidual (I am greatful to Dirk Werner for this remark).

Since the injective tensor product $X \otimes_{\epsilon} Y$ of two M_{∞} -spaces X and Y is again an M_{∞} -space ([10], Chapter 6), if Y is as in Theorem 2 and X a subspace

of an M_{∞} -space or a reflexive space then arguments similar to the one given during the proof of Theorem 3 yield that $X \otimes_{\epsilon} Y$ is an M-ideal in its bidual. The following question is open.

If Y is a subspace of a M_{∞} -space, is $X \otimes_{\epsilon} Y$ an M-ideal in its bidual for any X that is in M-ideal in its bidual?

REFERENCES

- AMIR, D. AND LINDENSTRAUSS, J., The structure of weakly compact sets in Banach spaces, Ann. Math. 88 (1968), 35-46.
- BEHRENDS, E., "M-Structures and the Banach-Stone Theorem", Lect. Notes in Math. Vol. 736, Springer, Berlin, 1979.
- BEHRENDS, E. AND HARMAND, P., Banach spaces which are proper M-ideals, Studia Math. 81 (1985), 159-169.
- CHO, C.M., Spaces of compact operators which are M-ideals in L(X,Y), Internat. J. Math. and Math. Sci. 15 (1992), 617-620.
- FABIAN, M. AND GODEFROY, G., The dual of every Asplund space admits a projection resolution of the identity, Studia Math. 91 (1988), 141-151.
- FEDER, M. AND SAPHAR, P., Spaces of compact operators and their dual space, Israel J. of Math. 21 (1975), 38-49.
- 7. GODEFROY, G. AND LI, D., Banach spaces which are M-ideals in their bidual have property (U), Ann. Inst. Fourier 39(2) (1989), 361-371.
- 8. GODEFROY, G. AND SAPHAR, P., Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672-695.
- 9. HARMAND, P. AND LIMA, A., Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264.
- HARMAND, P., WERNER, D. AND WERNER, W., M-ideals in Banach spaces and Banach algebras, Monograph in preparation.
- LIMA, Å., M-ideals of compact operators in classical Banach spaces, Math. Scand. 44 (1979), 207-217.
- 12. LIMA, Å., ÖJA, E., RAO, T.S.S.R.K. AND WERNER, D., Geometry of operator spaces, Preprint.
- PAYÁ, R. AND WERNER, W., An approximation property related to M-ideals of compact operators, Proc. Amer. Math. Soc. 111 (1991), 993-1001.
- WERNER, D., New classes of Banach spaces which are M-ideals in their biduals, Math. Proc. Camb. Phil. Soc. 111 (1992), 337-354.