ON THE λ–PROPERTY AND SPACES OF CONVERGENT SEQUENCES

Juan F. Mena Jurado
Dep. de Análisis Matemático
Facultad de Ciencias
Universidad de Granada
18071 Granada. ESPAÑA.

Juan C. Navarro Pascual
Dep. de Análisis Matemático
Fac. de C. Exp. de Almería
Universidad de Granada
04071 Almería. ESPAÑA.

A.M.S. Clas. 46B20

For X a normed space, we will use the following notation

$$B(X) = \{ x \in X : \|x\| \leq 1 \}$$

$$\mbox{ext}(B(X)) = \{ e \in X : e \mbox{ is an extreme point of } B(X) \}.$$

We will denote by $c(X)$ (resp. $l_1(X)$) the space of convergent (resp. absolutely summmable) sequences of elements of X with its usual norm.

The following concepts were introduced by Aron and Lohman in [2]:

Let x be an element of $B(X)$. If there exist $e \in \mbox{ext}(B(X))$, $y \in B(X)$ and $\lambda \in [0,1]$ such that $x = \lambda e + (1-\lambda)y$, we will say that the triple (e,y,λ) is amenable to x. In this case we can define

$$\lambda(x) = \mbox{Sup} \{ \lambda \in [0,1] : \mbox{there exist } (e,y,\lambda) \mbox{ amenable to } x \}.$$

X is said to have the λ–property if each point in its unit ball admits an amenable triple, and it is defined the λ–function of X as the function $x \mapsto \lambda(x)$ from $B(X)$ into $[0,1]$.

It is said that X has the uniform λ–property if X has the λ–property and, in addition, satisfies

$$\inf \{ \lambda(x) : x \in B(X) \} > 0.$$

It can be easily checked that every strictly convex space has the uniform λ–property.

We are interested in the λ–property for spaces of the form $c(X)$. Concerning this, up to date, it is only known that, if X is a strictly convex space, $c(X)$ has the uniform λ–property and for each $x = \{x_n\} \in B(c(X))$ we have

$$\bar{x}(x) = \inf \{ \lambda(x_n) : n \in \mathbb{N} \}.$$

where $\bar{x}(\cdot)$ (resp. $\lambda(\cdot)$) denotes the λ–function of $c(X)$ (resp. X),
we will use the same notation throughout the paper. This was proved by Aron – Lohman [2] and Alipruru [1].

It should be also mentioned that Aron – Lohman proved in [2] that every finite-dimensional normed space has the uniform \(\lambda \)-property.

In order to study the \(\lambda \)-property for \(c(X) \) we need the following characterization of the extreme points of its unit ball:

If \(X \) is a normed space and \(e = \{ e_n \} \in B(c(X)) \) then
\[
e \in \text{ext}(B(c(X))) \quad \text{if, and only if,} \quad e_n \in \text{ext}(B(X)), \forall \ n \in \mathbb{N}.
\]
Using this characterization, it is easy to prove the next result.

Proposition. Let \(X \) be a normed space. If \(c(X) \) has the \(\lambda \)-property (resp. uniform \(\lambda \)-property), then \(X \) has the \(\lambda \)-property (resp. uniform \(\lambda \)-property).

The converse of the above result is not true as the following example shows:

Example. Let \(C' \) denote the convex hull of the union of the sets \(A_1 \) and \(A_2 \) given by
\[
A_1 = \{ (x,y,z) \in \mathbb{R}^3 : |x|, |y| \leq 1 , z = 0 \}
\]
\[
A_2 = \{ (x,y,z) \in \mathbb{R}^3 : x^2 + z^2 = 1 , y = 0 , z \geq 0 \}
\]

take \(C = (0,0,1) + C' \) and \(\| - \| \) the norm on \(\mathbb{R}^3 \) whose unit ball is \(B = \text{co}(C \cup (-C)) \).

Then \(X = (\mathbb{R}^3, \| - \|) \) has the uniform \(\lambda \)-property and \(c(X) \) fails to have the \(\lambda \)-property.

Remark: The above space \(X \) appears in [2].

As we have said before, up to date, it has been proved that \(c(X) \) has the \(\lambda \)-property only when \(X \) is a strictly convex space.

The next result gives a class of non strictly convex normed spaces \(X \) for which \(c(X) \) has the uniform \(\lambda \)-property.

Theorem. Let \(X \) be a finite-dimensional normed space whose unit ball is a polyhedron (\(\text{ext}(B(X)) \) is a finite set), then \(c(X) \) has the uniform \(\lambda \)-property and, for each \(x = \{ x_n \} \in B(c(X)) \)
\[
\hat{x}(x) = \inf \{ \lambda(x_n) : n \in \mathbb{N} \}.
\]
In the above theorem X has the uniform λ-property. Now we see that this is not necessary in order to get that $c(X)$ has the λ-property. That will be a consequence of the following result.

THEOREM. Let X be a normed space. The space $c(X)$ has the λ-property if, and only if, $c(l_1(X))$ has the λ-property.

COROLLARY. Let X be a normed space satisfying one of the two conditions:

a) X is strictly convex

b) $B(X)$ is a polyhedron,

then $c(l_1(X))$ has the λ-property.

Taking into account that spaces of the form $l_1(X)$ always fail to have the uniform λ-property [3], the comment before the theorems is now clear.

REFERENCES

[1] Alzpuru Tomás, A., Una extensión del teorema de Tietze y la λ-propiedad en $C(K,X)$, XIV Jornadas Hispano–Lusas de Matemáticas, 1.989.

