A COUNTEREXAMPLE IN SEMIMETRIC SPACES

by

Jesus M.F.Castillo and Francisco Montalvo

Departamento de Matematicas. Universidad de Extremadura. Avda de Elvas s/n.
06071 Badajoz. España.

AMS (1980) Class number: 54E25, 54E15, 54A05, 54A20

Let X be a topological space and "d" a real valued nonnegative symmetric function defined on $X \times X$, such that $d(x,y)=0$ if and only if $x=y$. The pair (X,d) is said to be a semimetric space when the closure of every $A \times X$ is given by $\bar{A} = \{x \in X : d(x,A) = 0\}$, where $d(x,A) = \inf(d(x,a) : a \in A)$.

A filter \mathcal{F} on a set X is a nonempty collection of subsets of X satisfying: 1) $\emptyset \notin \mathcal{F}$. 2) $M, N \in \mathcal{F}$ implies $M \cap N \in \mathcal{F}$. 3) $M \in \mathcal{F}$, $M \subseteq N$ imply $N \in \mathcal{F}$.

A collection \mathcal{B} of subsets of X is a filter-base on X if the set \mathcal{F} of subsets of X which contain some $B \in \mathcal{B}$ is a filter on X. In this case we will also say that \mathcal{B} is a base for the filter \mathcal{F}. If B_1 and B_2 are filter-bases on X, it is said that B_1 is finer than B_2 when each $B_2 \subseteq B_1$ contains a $B_2 \in B_1$.

The filter-base \mathcal{B} is said to be convergent to a point x of a topological space X when for each neighborhood of x, U, there is a $B \in \mathcal{B}$ such that $B \subseteq U$. It is easy to see that if X is a semimetric space, the filter-base \mathcal{B} converges to x if and only if each ball of center x contains some $B \in \mathcal{B}$. A filter-base \mathcal{B} in a semimetric space (X,d) is called a d-Cauchy filter-base when for each $\varepsilon > 0$ there is some $B \in \mathcal{B}$ having d-diameter $\delta(B) = \sup(d(x,y) : x, y \in B)$.

If (x_n) is a sequence in X, then it is obvious that the filter-base (A_n), $A_n = \{x_n : n+k\} \in \mathcal{B}$ (elementary filter-base) is d-Cauchy (or convergent to x) if and only if (x_n) is d-Cauchy (or convergent to x).

The semimetric space (X,d) is said to be Cauchy-complete if every d-Cauchy sequence converges, and it is said to be complete if every d-Cauchy filter converges. Other different definitions of completeness for semimetric spaces can be found in [1] and [5].

It is clear that "complete" implies "Cauchy complete". The question arises whether every Cauchy complete semimetric space is complete. The answer is known to be true for T_2-spaces [4], and we give in this paper a finer condition. We also obtain an example of a semimetric space (X,d) which is Cauchy complete but not complete.
Proposition. Let \((X, d)\) be a Cauchy complete semimetric space where every Cauchy filter with countable filter-base admits a finer elementary filter-base which converges to, at most, a countable quantity of points. Then \((X, d)\) is complete.

EXAMPLE. A Cauchy complete semimetric space which is not complete:

Let \(X\) be the closed unit circle (without its center), and let
\[x = \{ |x|, \arg x \}, \text{ arg } x, \text{ with } 2\pi \arg x \leq 4\pi, \text{ be a polar representation of the points } x \in X. \text{ Define on } X \text{ the following distance function:} \]

\[
d(x, x) = 0 \\
d(x, y) = 1 - \min(|x|, |y|) \quad \text{if } |x| < |y|, x \neq y \\
d(x, y) = d(y, x) = 1 - |x| \quad \text{if } |x| < 1, |y| = 1, \text{ arg } x \neq \text{ arg } y \\
d(x, y) = d(y, x) = \text{arg } x \quad \text{if } |x| < 1, |y| = 1, \text{ arg } x = \text{ arg } y \\
d(x, y) = \max(\text{ arg } x, \text{ arg } y) \quad \text{if } |x| = 1, |y| = 1, x \neq y
\]

Remark. If we replace the condition \(2\pi < \arg x \leq 4\pi\) into \(0 < \arg x < 2\pi\), and we take \(d(x, y) = d(y, x) = \max(\arg y, 1 - |x|)\) when \(|x| < 1, |y| = 1\) and \(\arg x = \arg y\), then we obtain a complete semimetric space where every convergent sequence converges to an uncountable number of points. Therefore the hypothesis of the proposition is not necessary. On the other hand, it is easy to find Cauchy complete not Hausdorff semimetric spaces which satisfy the condition of the proposition.

The preceding EXAMPLE (and proposition) were formerly obtained in a different context than semimetric spaces: that of diameter spaces, introduced and studied by Montalvo in [6].

Definition. A diameter space is a pair \((X, \delta)\), where \(X\) is a nonempty set and \(\delta : \mathcal{P}(X) \rightarrow [0, +\infty]\) a map (diameter) satisfying:

\[
(\delta_1) \quad \delta(A) > 0 \text{ for all } A \in X \\
(\delta_2) \quad \text{The empty set and sets with a single point have diameter 0.} \\
\text{No other set has diameter 0.} \\
(\delta_3) \quad \text{Finite sets have finite diameter.} \\
(\delta_4) \quad \text{If } A \subseteq B \text{ then } \delta(A) \leq \delta(B) \\
(\delta_5) \quad \text{If } (A_i)_{i \in I} \text{ is a family of subsets of } X \text{ totally ordered by inclusion, such that } \delta(A_i) \leq K \text{ for each } i \in I, \text{ then } \delta(\bigcup_{i \in I} A_i) \leq K.
\]
If (X,d) is a semimetric space, it is easy to see that the application

$$\delta(A) = \sup \{d(x,y) : x,y \in A \}$$

defines a diameter on X. However not every diameter can be obtained in this form (see [6]).

Several different notions of completeness can be defined in abstract diameter spaces. Results relating those notions of completeness for the diameter space generated by a semimetric d can be translated into results about d. Our results in this paper correspond to some other more general statements about the associated diameter space, as can be seen in its full generality in [6].

References

THIS PAPER IS TO APPEAR IN DOGA MATH.