ABOUT CERTAIN ISOMORPHIC PROPERTIES OF BANACH SPACES IN PROJECTIVE TENSOR PRODUCTS

G. Emmanuele

This note is an announcement of results contained in the papers [4],[5],[6] concerning isomorphic properties of Banach spaces in projective tensor products (for this definition and some property we refer to [1]). At the end, some new result is obtained, too.

In the sequel $L(E,F^*)$ (resp. $K(E,F^*)$) denotes the space of all operators (resp. compact operators) from a Banach space E into the dual Banach space F^*. The first result needs the definition of a new isomorphic property introduced in [4]: we say that a Banach space X has the (DPrcP) if any Dunford-Pettis set, i.e., a bounded set M such that $\lim_{n} \sup_{x \in M} |x^n(x)| = 0$ for any ω-null sequence $(x^n) \subset X^*$, is relatively compact. In [4] we obtained the following results

THEOREM 1 [4]. A dual Banach space X^* has the (DPrcP) iff X does not contain a copy of l^1.

THEOREM 2 [4]. Let E,F be two Banach spaces not containing l^1. If $L(E,F^*) = K(E,F^*)$, then $E \subset F$ does not contain l^1.

The proof of Theorem 2 is based upon Theorem 1 and another characterization of Banach spaces not containing l^1 proved in [3].

We note that Theorem 2 answers a question put by Ruesch in [12].

The following two results we present are about Property (V) of Pelczynski ([10]) and the Reciprocal Dunford-Pettis Property (RDPP) ([8]). The first is from [5], the other from [6].

THEOREM 3. Let E be a Banach space with Property (V) and F be a reflexive space. If $L(E,F^*) = K(E,F^*)$, then $E \subset F$ has Property (V).

THEOREM 4. Let E,F be two Banach spaces. Then the following are equivalent, provided $L(E,F^*) = K(E,F^*)$,

i) E and F possess the (RDPP) and l^1 doesn't embed into at least one of them

ii) $E \subset F$ has the (RDPP).

In the proof of Theorem 3 we used a characterization of Property (V) by Pelczynski in [10].

AMS Subject Classification: 46M05, 46B20, 46B25
property (V) contained in [10] and in the proof of Theorem 4 a characterization of the (RDPP) to be found in [9] and the already quoted result from [3]. We note that all of our papers contain remarks about the necessity of the assumption "L(E,F*) = K(E,F*)". In order to illustrate the techniques we used, based upon results about weak sequential compactness in K(E,F*) ([12]), we present a new result about the so-called Grothendieck Property (GrP): a B-space X has the (GrP) if w*-null sequences in X* are w-null ([11]).

THEOREM 5. Let E be a B-space with the (GrP) and F be a reflexive space. If L(E,F*) = K(E,F*), then $E_{\pi}F$ has the (GrP).

Proof. Let (b_n) be a w*-null sequence in K(E,F*) = $(E_{\pi}F)^*$. Take x^*yE^* and yF^*. The operator mapping $B \in K(E,F^*)$ into $B^*(y)E^*$ is w*-w* sequentially continuous; indeed, if (T_n) is w*-null and $x \in E$, we have $T_n^*(y)(x) = T_n(x y) \to 0$ because $x y \in E_{\pi}F$ and (T_n) is w*-null. Hence $B_n^*(y) \wto 0$ in E*. But E has the (GrP) and so $B_n^*(y) \wto 0$. Hence, $B_{**}(x^{**})(y) \to 0$ and this means that $B_n \wto 0$ ([12]). We are done.

THEOREM 6. Let E be a reflexive space and F be a B-space with the (GrP). If L(E,F*) = K(E,F*), then $E_{\pi}F$ has the (GrP).

Proof. Since $E_{\pi}F$ is isomorphic to $F_{\pi}E$, it is enough to apply Theorem 5 to $F_{\pi}E$; so we need to prove that L(F,E*) = K(F,E*).

Take $T \in L(F,E*)$; we have $T^*: E^* \to F^*$ and $T_{E^*} \in K(E,F^*)$. Since T^* is w*-w* continuous and B_{E^*} is w*-dense in $B_{E^{**}}$, it is quite easy to prove that $T_{E^*}(B_{E^*}) \to T^*(B_{E^{**}})$. We are done.

The hypothesis of reflexivity of E(or F) in the above results is not restrictive thanks to the following remark.

REMARK. If $E_{\pi}F$ has the (GrP), then either E or F is reflexive.

Assume l^1 embeds into both E and F. A result in [11] gives that (l^1 and so l^2 embeds into both E^* and F^*. Hence $l^2_{\pi}l^1$ is a subspace of L(E,F*), that is weakly sequentially complete as a dual of a space with the (GrP) must be. Now, recall that c_0 lives inside of $l^2_{\pi}l^1$; a contradiction. And so either E or F contains l^1; this means that either E or F is reflexive ([12]).
As a consequence, we note that the space $l^\infty_{\mathbb{R}}$, 1^{∞} cannot have the (GrP), whereas $l^\infty_{\mathbb{R}}$, 1^p, $2 < p < \infty$, has that property. Instead, $l^\infty_{\mathbb{R}}$, 1^p, $1 < p \leq 2$, doesn't possess the (GrP), since its dual space contains c_0, as proved in [7].

REFERENCES

1. J. Diestel, J. J. Uhl, Jr., Vector Measures, AMS 1977
2. J. Diestel, C. J. Seifert, The Banach-Saks operator ideal, I:0 = operators on space of continuous functions, Special Commemorative Issue of Commentationes mathematicae dedicated to Prof. W. Orlicz 1978-79
4. G. Emmanuele, On Banach spaces in which Dunford-Pettis sets are relatively compact, to appear
5. G. Emmanuele, Un théorème sur la propriété (V) de A. Pelczynski dans les produits tensoriel projectifs des espaces de Banach, to appear
7. G. Emmanuele, A remark on the containment of c_0 by spaces of compact operators, to appear
8. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espace du type $C(K)$, Can. J. Math. 5(1953)129-173
11. A. Pelczynski, On Banach spaces containing $L^1(\mu)$, Studia Math. 30(1968)231-246

Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italia