DUALITY PROPERTIES OF INJECTIVE MODULES

José L. Gómez Pardo
Departamento de Matemáticas, Universidad de Murcia
30001 Murcia (Spain)

AMS Subject Classification (1980): 16A49, 16A52, 16A65

A Morita duality between two rings R and T is always induced by a faithfully balanced bimodule R_U^T such that R_U and U_T^R are injective cogenerators. In [13], an asymmetrical generalization of Morita duality has been given by considering "duality R-modules", i.e., bimodules R_U^T such that R_U is a finitely cogenerated linearly compact quasi-injective self-cogenerator and T is naturally isomorphic to $\text{End}_R(U)$. It has been remarked in [13] that these modules can be regarded as "Ω-Morita duality modules", because R_U^T is a Morita duality module if and only if it is a duality R-module and a (right) duality S-module. However, they are in some sense rather more than "Ω-Morita duality modules" for if R_U is a module and $T = \text{End}_R(U)$, then U_T can be an injective cogenerator without R_U being finitely cogenerated nor linearly compact nor a self-cogenerator. Thus the question arises of giving necessary and sufficient conditions on R_U for U_T to be an injective cogenerator.

We will attack this problem by looking first at the simpler one of determining when U_T is injective, i.e., when R_U is a counterinjective module. There is a result due to Würfel [12] and Damiano [4] which will be helpful for this purpose, namely, U_T is FP-injective (i.e., $\text{Ext}_T(F,U) = 0$ for every finitely presented right T-module F) if and only if R_U cogenerates all cokernels of homomorphisms $U^m \rightarrow U^n$. It is also well known that the linear compactness of R_U is closely related to the injectivity of U_T (see [8], [10]). But it is easily seen that a counterinjective module is not necessarily linearly compact (in the discrete topology) and so we will make use of the following more general concept: A left R-module X will be called U-linearly compact when each finitely solvable system of congruences $x \equiv x_i (\text{mod } X_i)$, with the X_i U-closed submodules of X (i.e., such that X/X_i is U-cogenerated), is solvable [6]. We then get the following characterization of counterinjective modules:

Theorem 1. A left R-module R_U is counterinjective if and only if the following conditions hold:

1. R_U is finitely cogenerated,
2. R_U is linearly compact,
3. R_U is linearly U-compact,
4. R_U cogenerates all cokernels of homomorphisms $R_U \rightarrow R_U^n$.
i) Every cokernel of a homomorphism of the form $U^m \longrightarrow U^n$ is U-cogenerated.

ii) U is U-linearly compact.

Several results scattered in the literature can be recovered as easy corollaries of Theorem 1. For instance we mention [8, Coroll. 1, p. 119], [10, Coroll. 2, p. 342], and [9 Theorem 1]. As another application, we get the following characterization of rings with Morita duality which improves [6, Corollary 3].

Corollary 2. Let R^T_U be a faithfully balanced bimodule such that R^U_U is a cogenerator and the injective envelope of U^T_T is cogenerated by U^T_T. Then R has a left Morita duality.

The proof consists in using results of [3] and [7] to show that R^U_U is counterinjective and then one can apply Theorem 1.

If we consider faithfully balanced bimodules R^U_U that are injective and counterinjective, it is easy to see that they induce a Morita duality (in the sense of [11]) between the quotient categories of R-Mod and R-Mod modulo the localizing subcategories defined by R^U_U and U^T_T. The following result gives an indication of how close is R to having a Morita duality in this case. Recall that an R-module X is said to have U-dominant dimension ≥ 2 (U-dom dim $X \geq 2$) if there exists an exact sequence $0 \longrightarrow X \longrightarrow X_1 \longrightarrow X_2$, in which X_1 and X_2 are direct products of copies of R^U_U.

Theorem 3. Let R^U_U be an injective and counterinjective module. If every direct sum of copies of R^U_U has U-dom dim ≥ 2, then T is semiperfect. If U is faithfully balanced and the class of modules of U-dom dim $= 2$ is closed under direct unions, then R has a left Morita duality.

As a consequence we get the following extension of [5, Coroll. 10.14]. Recall that an R-module X is called Σ-injective (resp. Δ-injective) when it is injective and R satisfies the ascending (resp. descending) chain condition on annihilators of subsets of X.

Corollary 4. Let R^T_U be a faithfully balanced bimodule such that R^U_U is Σ-injective (resp. Δ-injective) and U^T_T is injective. Then R is a left noetherian (resp. artinian) ring with a left Morita duality.

Recall that a module U is quasi-injective if, for every submodule X of U, the canonical homomorphism $\text{Hom}_R(U,U) \longrightarrow \text{Hom}_R(X,U)$ is an epimorphism. Using Theorem 1 we can now characterize the quasi-injective modules R^U_U such that U is an injective cogenerator.

Theorem 5. Let R^U_U be a quasi-injective module and $T = \text{End}_R(R^U_U)$.

Then the following conditions are equivalent:

i) U_T is an injective cogenerator

ii) U^T satisfies the following conditions:
 a) U^T cogenerates all the cokernels of homomorphisms $U \longrightarrow U^p$.
 b) U^T is U-linearly compact.
 c) The lattice of U-closed submodules of U^T has the finite intersection property.

iii) Every cyclic right T-module and every U-cogenerated quotient of U are U-reflexive.

We remark that the artinian injective modules U^T which cogenerate an exact torsion theory (see [11] for the definition) satisfy all the conditions in ii) of Theorem 5, so that in this case, U_T is not only injective as asserted in [2, Theorem 4.2] but is also a cogenerator.

The proofs of the foregoing results, except Corollary 2, will appear in [6].

References