The Sum problem for Hilbert spaces.

lesús M.F. Castillo.

Departamento de Matemáticas. Universidad de Extremadura. Avda de Elvas s/n. 06071 Badajoz. España.

We consider the following problem: there are locally convex spaces E for which the sum space \bigoplus E is a subspace of some product E^I , and others for which such an embedding is not possible. Examples of the first kind are $E=C^\infty(R)$ or $[1_\infty \mu(1_\infty 1_1)]$. Examples of the second kind are the spaces carrying the weak topology.

Problem. Characterize those locally convex spaces E such that $\bigoplus_{N} E$ is (isomorphic to) a subspace of some product E^{I} .

In this paper we give a complete solution of this problem for $Hilbert\ spaces$:

Theorem. Let H be a Hilbert space. Then the locally convex sum \oplus H is a subspace of the product H^J if and only if H is infinite—dimensional, I is countable, and card $J \geqslant 2^{\frac{N_o}{c}}$.

Obviously H needs to be infinite-dimensional since \bigoplus K does not carry the weak topology and therefore cannot be a subspace of K^I. It is also clear that card J \geqslant 2^{cardI} since this is the cardinal of a base of neighborhoods of 0 of the sum space.

The proof can be divided into some propositions:

Proposition 1. $\bigoplus_{N} l_2$ is a subspace of l_2^J when card $J \gg 2^{\frac{1}{N_0}}$

Proposition 2. $\bigoplus_{I} 1_{2}$ is not a subspace of any product of copies of 1_{2}

Then we only need to consider the possibility of an embedding of $\bigoplus_{i=1}^{n} l_2(\Lambda)$ into $l_2(\Lambda)^j$ I, Λ , J uncountable. We have:

Lemma. Let I,J be uncountable sets, p > q and $T:l_p(I) \longrightarrow l_q(J)$ a continuous operator. Then $ImT \subset l_q(N)$.

The preceding lemma asserts that such a T can only "move" a countable number of coordinates in J. From this follows:

Lemma. A diagonal operator $D_{\sigma}: l_p(I) \longrightarrow l_p(I)$, $\sigma_i > 0 \quad \forall i \in I$ cannot be continuously factorized through $l_q(I)$ if $p \neq q$.

Proposition 3. Let I be an uncountable set, and H a Hilbert space, then \bigoplus_{x} H is not a subspace of any product H^J.

The idea is that if $\bigoplus_I \mathbf{1}_2(I)$ is a subspace of $\mathbf{1}_2(I)^J$ then a subfactorization of the diagonal operator

($\Gamma_i > 0$ for all i) through $l_2(I)$ could be done. Using the orthogonal projection onto \overline{ImA} we get a factorization

but then, by the lemma, ${\rm ImD}_{\sigma} \subset 1_1(N),$ which is impossible since D_ "moves" all the indexes.

References

- |1| Jesús M.F.Castillo. The Sum problem for Banach spaces. Colloquium lectures 1988. Universidad de Extremadura.
- |2| H.Jarchow. Locally Convex Spaces. B.G.Teubner Stuttgart 1981.

(This paper is to appear in the Proceedings of the A.M.S.)