SMOOTH TORAL ACTIONS ON PRINCIPAL BUNDLES AND
CHARACTERISTIC CLASSES

NIEVES ALAMO AND FRANCISCO GOMEZ

Departamento de Algebra, Geometría y Topología, Facultad de Ciencias. Universidad de Málaga.
Campus Teatinos. Apartado 59. Málaga 29080.

1980 AMS Subject Classification: 57R20

This is an extract of a preprint which will be published elsewhere.

The purpose of our work is to find explicit formulae for the computation of some
characteristic classes of smooth principal bundles $\mathcal{P}: P \to B$, in terms of local invariants
at a "singular subset" A_G of B, associated to a smooth action of a compact Lie group
G on \mathcal{P}. This singular subset, A_G, is defined as the set of points x in B whose
isotropy subgroups G_x have dimension at least one.

The starting point for our research is the following result:

Let $\alpha \in H^2(\mathcal{P}(B;k)$ be a characteristic class of \mathcal{P} with $2p > n - r$ ($n = \dim B,$
$r = \dim G$), where H^* denotes singular cohomology and k is any field of
characteristic zero. There exists then $\beta \in H^2(\mathcal{P}(B, B - A_G; k$) such that $J^*(\beta) = \alpha,$
where J^* is the homomorphism induced in cohomology by the inclusion
$J: B \to (B, B - A_G)$. In particular, if the action of G on B is almost free, α must be
zero. (See [6] and [9] for the particular case of vector bundles)

If B is compact and oriented, we can see more explicitly the dependence of the
characteristic classes on the singular set A_G, because in this case we have a
commutative diagram

$$
\begin{array}{ccc}
H^2(\mathcal{P}(B, B - A_G)) & \xrightarrow{J^*} & H^2(\mathcal{P}(B)) \\
\gamma \uparrow \cong & & \cong \uparrow \text{Poincaré duality} \\
H_n, 2p(A_G) & \longrightarrow & H_n, 2p(B)
\end{array}
$$

(see lemma 14, section 10, chapter 6 of [10], for the definition of γ), and then, if
$2p > n - r$, the Poincaré dual of α can be represented by a cycle z of A_G. The general
problem is to find an explicit formula giving such a z. This kind of residue formula
should involve only the restriction of \mathcal{P} to A_G, the action of G on this restriction,
the embedding of A_G in B ("normal bundle" of A_G in B), and the action of G in this
"normal bundle".

We shall restrict ourselves to study the case of G being a torus. This restriction
includes the equivalent formulation, for compact manifolds, of infinitesimal
isometries. We further assume that the action of G on B has finite orbit type (i.e. the
action has only a finite number of isotropy subgroups). This is the case, for instance,
when B is compact (see [8]).

We have:

$$A_G = \bigcup_{F \in \mathcal{F}} F$$

where \mathcal{F} is the family of connected components of the fixed point sets under the action of all subtori H of G, with $\dim H \geq 1$, appearing as 1-component of isotropy subgroups under the action of G on B.

We need to assume a hypothesis concerning the "genericity" of the action:

Definition 1. The action of G on B is called generic if for each connected component of A_G, there exist r subtori of G of dimension one, S_1, \ldots, S_r, such that they generate G, i.e. $S_1 \cdots S_r = G$, and any subtorus of dimension one appearing as 1-component of isotropy subgroup on that connected component, is one of the S_i (cf. 2.10 pag 42 of [1]).

In particular, the genericity assumption implies that, each element of \mathcal{F} which is fixed by a subtorus of dimension s, is contained in exactly s elements of \mathcal{F} which are fixed only by subtori of dimension 1.

To construct characteristic classes, we use the Chern-Weil homomorphism of \mathcal{F},

$$w_p : \text{Sym} \left(\mathcal{K} \right)_1 \to H^*_G(B)$$

(see for instance [7]), where $\text{Sym} \left(\mathcal{K} \right)_1$ is the graded algebra of multilinear symmetric functions in the Lie algebra \mathcal{K} of the structure group K of \mathcal{F}, invariant under the adjoint representation of K in its Lie algebra \mathcal{K}.

The residue classes.

Let $F \in \mathcal{F}$ be a connected component of the fixed point set by a subtorus of dimension s, and let F_1, \ldots, F_s be the elements of \mathcal{F} containing F, and fixed only by subtori of dimension 1, S_1, \ldots, S_r, respectively.

Choose $h_i \neq 0$ in the Lie algebra \mathcal{K}_i of S_i, $i = 1, \ldots, s$. Give η_{F_i} (normal bundle of F_i in B) the orientation induced by the complex structure associated to h_i, and give $\eta_F = \eta_{F_1} \otimes \cdots \otimes \eta_{F_s}$ the direct sum orientation. (See [6]).

Then, if $G \in \text{Sym} \left(\mathcal{K} \right)_1$, and $2m = \text{codim } F$, we consider the following "Laurent polynomial" in the indeterminates X_1, \ldots, X_s:

$$w \left(\left. \mathcal{P} \right|_F, \sum_{i=1}^s X_i h_i, \Gamma \right) \frac{(-2\pi)^m (-1)^n+1}{\prod_{i=1}^n w \left(\eta_{F_i} \left| F \right|, X_i h_i, Pf_{F_i} \right)}$$

where $w \left(\xi, h, \right)$ denotes the "generalized" Chern-Weil homomorphism (see [2], or
where the definition differs from the one in this paper by a certain constant factor.

Definition 2. We define the residue class \(\alpha_\Gamma(F) \in H_{\text{rk}}^{2p-2m}(F) \) as the coefficient of the term of degree 0 of the above "Laurent polynomial".

Now, we can state the residue formula as follows:

Theorem. Let \(\mathcal{P}: P \to B \) be a smooth principal bundle with structural group \(K \), and assume that a torus \(G \) acts smoothly on \(\mathcal{P} \). Suppose that the action of \(G \) on \(B \) has a finite number of orbit types and it is generic. Then, if \(2p > \dim B - \dim G \),

\[
w_p(\Gamma) = \sum_{F \in \mathcal{F}} \int_{-1}^{-1} \alpha_\Gamma(F),
\]

for \(\Gamma \in \text{Sym}^p(K) \), and where \(\int_{-1}^{-1} \) denotes the inverse of the fiber integral \(\int \) associate to any tubular neighborhood \(U \) of \(F \) in \(B \) oriented as above, followed by the canonical homomorphism \(H_{\text{rk}}^\bullet(U) \to H^\bullet(B) \).

For the proof, see [2].

Residue formulae for characteristic classes in some particular cases have been found by other authors. See for instance [3], [6],[9] in the real case, [4] in the complex case, and [5] for \(\mathbb{Z}/(2) \) coefficients.

REFERENCES

