A CHARACTERIZATION OF SMOOTH AND REGULAR ALGEBRAS IN CHARACTERISTIC ZERO

Antonio G. Rodicio

Departamento de Algebra. Facultad de Matemáticas. 15771 Santiago de Compostela. SPAIN.

AMS Subject Classification (1980): 13D03, 13D05.

All rings considered in this paper will be commutative and with unit. For an A-module M, $\operatorname{fd}_A(M)$ (resp. $\operatorname{pd}_A(M)$) will denotes the flat (resp. projective) dimension of M. We will use the André-Quillen homology functors $\operatorname{H}_n(A,B,-)$ |1|.

Let A be a ring and B an A-algebra. Consider B as a B $^{\Omega}_{A}$ B-algebra via the homomorphism $\pi: B^{\Omega}_{A}$ B \longrightarrow B, $\pi(b^{\Omega}_{B^{\Omega}}) = bb'$. The purpose of this paper is to study the condition $\mathrm{fd}_{B^{\Omega}_{A}}$ B $^{(B)}$ < ∞ . We obtain:

<u>Main Theorem</u>. Let A be a noetherian ring and B an A-algebra. Suppose that the characteristic of B is zero and that $B\mathbf{A}_A^B$ is a noetherian ring. The following statements are equivalent:

- 1) The homomorphism A \longrightarrow B is regular (i.e. $H_1(A,B,\rightarrow)=0$)
- 2) B is a flat A-module and $fd_{B\Theta_nB}(B) < \infty$.

Corollary A. Let A be a noetherian ring and B an A-algebra of finite type. Suppose that the characteristic of B is zero. Then, B is a smooth A-algebra if and only if B is a flat A-module and $fd_{B\boxtimes_A B}(B)<\infty$.

Corollary B. Let K be a zero characteristic field and B a K-algebra of finite type. Then, B is a regular ring if and only if $\mathrm{fd}_{B M_A B}(B) < \infty$. Corollary C. Let K be a zero characteristic field and B a local K-algebra of essentially finite type. Then, B is a regular local ring if and only if $\mathrm{fd}_{B M_A B}(B) < \infty$.

In order to prove Main Theorem we use the following results.

<u>Proposition 1.</u> Let A be a noetherian ring and B an A-algebra of finite type. Then, $H_2(A,B,-) = 0$ if and only if $fd_A(B) < \infty$ and $H_3(A,B,-) = 0$.

It is a consequence of |4, corl. 3.2.2|, |3, th. 1'| and |1, prop. 17.2|.

<u>Proposition 2</u>. Let A be a noetherian ring and B a flat and noetherian A-algebra. The following conditions are equivalent:

- i) $H_2(A,B,-) = 0$
- ii) $H_n(A,B,-) = 0$ for n sufficiently large.

In the proof of ii) \implies i) we use a deep Avramov's result |2, th. 1.

Proposition 3. Let A be a ring, B a flat A-algebra, and W a B-module.

For each $n \ge 0$ there is an isomorphism

$$H_n(A,B,W) \simeq H_n(B \Delta_A B,B,W)$$
.

From proposition 1 and 3 it follows:

Theorem 4. Let A be a ring and B a flat A-algebra. Suppose that BM_AB is a noetherian ring. Then, $H_1(A,B,-)=0$ if and only if $fd_{BM_AB}(B)<\infty$ and $H_2(A,B,-)=0$.

Proof of Main Theorem

- 1) \Rightarrow 2). It is a consequence of |1, corol. 15.20 and theorem 4.
- 2) \Rightarrow 1). Since B $^{\omega}_{A}B$ is a noetherian ring and B is a B $^{\omega}_{A}B$ -module finitely generated, we have $\mathrm{fd}_{B}^{\omega}_{A}B$ (B) $<\infty$ if and only if $\mathrm{pd}_{B}^{\omega}_{A}B$ (B) $<\infty$. Therefore |5, th. 8.6| H $_{r}$ (A,B,B) = 0 for r sufficient large and H S (A,B, \rightarrow) = 0 for s sufficient large. This implies H $_{n}$ (A,B, \rightarrow) = 0 for n sufficient large. Using proposition 2 and theorem 4, the result follows.

REFERENCES

- 1. M. ANDRE. Homologie des Algèbres Commutatives. Springer (1974).
- L.L. AVRAMOV. Local rings of finite simplicial dimension. Bull. AMS
 (1984) 289-291.

- 3. D. FERRAND. Suite régulière et intersection complète. C.R. Acad. Sci.
 Paris 264 (1967) 427-428.
- 4. S. LICHTENBAUM, M. SCHLESSINGER. The cotangent complex of a morphism.

 Trans. AMS 128 (1967) 41-70.
- 5. D. QUILLEN. On the (co-)homology of commutative rings. Proc. Symp.

 Pure Math. 37 (1970) 65-87.