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The well-known factorization of Davis-Figiel-Johnson-Pelczynski
[6], briefly DFJP factorization, shows how an operator in the class
L of all bounded linear operators between Banach spaces, T€L(E,X), fac
tors through a Banach space Y in such a way that in the corresponding
product T = jA the operator j is tauberian injective; moreover, Y is
reflexive if and only if T is weakly compact (T& WCo). This construc-
tion has been used by many authors and systematically studied in [22]
and [23].

We denote H(E):= E"/E and H(T)€e L(H(E),H(X)) is the operator
induced by the biconjugate T" of T in the form H(T)(x"+E)= T"x"+ X.
T is said to be tauberian provided (T")'](X)CE; of course T"(E)cCX,
so actually T is tauberian if and only if (T")'](X) = £ ,[14], [29],
or equivalently H(T) injective. Then, T is said to be a cotauberian
operator provided H(T) has range dense in H(X); note that our cotau-
berian operators are different from those considered by K.W.Yang in
[30]. It is clear that T is cotauberian if and only if T'is tauberian.

With every operator ideal U there is associated the Banach space
ideal Sp(WU):= {ECBI IEeu}, and with every Banach space ideal A the
re is associated the operator ideal 0p(A):={T€ L}T factors through
some EeA} ; then A = Sp(Op(A)), but Op(Sp(%))cW . The three-space
property in the framework of a space ideal A was considered in [25] and
means that if McX€B and M,X/M€A, then X€A. The factorization
property for an operator ideal U means U= Op(Sp(W)).

The paper is organized as follows.

In Section 1 we show a factorization T = Uk of Té€L(E,X) through
a Banach space Z, where k is a cotauberian operator with dense range,
and investigate relations between both factorizations:
1.1. PROPOSITION Let T€L(E,X) and T = Uk its cotauberian factoriza-



tion. Then: (i) k is cotauberian with range dense. (ii) T'= k'U' is
the tauberian factorization of T', and the intermediate space Y is
dual of that Z of the cotauberian factorization of T.

The remainder of the section contains more or less immediate ap-
plications of these factorization techniques.

In section 2 we consider functions S from the class B of all Ba-
nach spaces in the class N of all normed spaces, named ideal functions,
which assign to every E€B a linear subspace S(E) of E" such that
ECS(E) and T"(S(E))C S(X) for every E,X€B and T€L(E,X). Each ideal
function S determine two operator ideals 1LF and 115 defined by

UK(E,X) :={TeL(E,X)| T*(S(E))c X | and us(E,X):={TeL(E,X)|T"E"cs(x)}.

We shall say that S is injective if for every EEB and every
subspace M of E we have i"(S(M)) = S(E)n MO0 (i the embedding map);
and S is surjective if for every E€B and every subspace M of E we
have q"(S(E)) = S(E/M) (q the quotient map).

The main results in section 2 are the following:

2.6. THEOREM. (i) If S is injective, then Sp(Uf) is three-space.

(ii) If S is surjective, then Sp(lkg) is three-space.

2.10. THEOREM Let S be a closed ideal function, that is, such that
S(F) € B for every Banach space F; let X,E€B, W a bounded absolutely
convex of X, and p a continuous seminorm in E.

(i) If S is injective and NOOC.S(X), then the intermediate space
Y of the tauberian (DFJP) construction belongs to Sp(ZLs), that is,
S(Y) = Y,

(i1) If S is surjective and {xe.Elp(x)é 1} © is relatively
O(E',S(E))-compact, then the intermediate space Z of the cotauberian
construction belongs to Sp(1L$), that is, S(Z) = Z.

2.11. THEOREM Let S be a closed ideal function.
(i) If S is injective, then ILS has the factorization property,

that is, Us = Op(Sp(ths)).
(ii) If S is surjective, then WU has the factorization property,
that is, W = op(sp(%*)).

Section 3 contains some examples and remarks.
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