MALCEV

H*- A L G E B R A S

M. Cabrera, J. Martinez and A. Rodriguez.

Dpto. de Análisis Matemático. Facultad de Ciencias Universidad de Granada. Granada - 18071. (SPAIN).

Associative H*-algebras were studied by Ambrose in [1] and alternative H*-algebras were studied by Pérez de Guzmán [4]. The algebra obtained by symmetrization of the product of an alternative H*-algebra is a Jordan H*-algebra. These algebras were studied by Viola [9], Viola and Rema [10] and Cuenca and Rodríguez in [2]. The algebra obtained by skew-symmetrization of an alternative H*-algebra is a Malcev H*-algebra, in particular one obtains, if the initial algebra is associative, Lie H*-algebras which were studied by Schue [7,8]. In this paper we deal with Malcev H*-algebras.

A Malcev algebra is defined to be a nonassociative algebra A satisfying the identities

xy=-yx and J(x,y,xz)=J(x,y,z)x for all x,y,z in A, where

J(x,y,z)=(xy)z + (yz)x + (zx)y

Sagle [5] studies in full detail the finite-dimensional Malcev algebras and for any algebraically closed field \mathbb{K} of caracteristic zero he introduces a Malcev algebra over \mathbb{K} A₇ which is known to be the only finite dimensional simple non Lie Malcev algebra over \mathbb{K} [3,6].

A H^* -algebra is a complex nonassociative algebra A whose underlying vector space is a Hilbert space, together with an algebra involution * such that

 $(xy/z)=(x/zy^*)=(y/x^*z)$ for all x,y,z in A

A H*-algebra A is called topologically simple if $A^2 \neq 0$ and A contains no nonzero proper closed ideals.

In [2] Cuenca and Rodríguez started the structure theory for non-associative H*-algebras, showing that every non-associative H*-algebra with zero annihilator is the closure of the orthogonal sum of its minimal closed ideals, each of which is a topologically simple H*-algebra. This result reduces the task of description of the H*-algebras of any hereditary class to the topologically simple case.

AMS class. 46K15, 46H2O, 17D1O

The seven-dimensional simple non-Lie Malcev complex algebra A_7 introduced by Sagle as the quotient of 0^- (the akew-symmetrization of the algebra 0 of complex octonions) over its annihilator ideal Cl, can be structured in a natural way as a H*-algebra, since 0 can be endowed with a H*-algebra structure [4].

Our main result is the following

THEOREM. Let A be a topologically simple non-Lie Malcev
H*-algebra. Them A is, up to a positive scalar multiple of
the inner product, the simple non-Lie Malcev H*-algebra A7.

The strategy of our proof is to show that the quadratic H^* -algebra D, associated to the algebra A in our theorem, is an alternative algebra, where D=C \bullet A with product, involution and inner product defined by

$$(\alpha, x)(\beta, y) = (\alpha \beta + (x/y^*), \beta x + \alpha y + xy), (\alpha, x)^{\alpha} = (\overline{\alpha}, x^*)$$

$$((\alpha,x)/(\beta,y))=$$
 $\overline{\beta}+(x/y)$

for α , β complex numbers and x,y elements in A. For this purpose, we show that the algebra A satisfies (up to a positive scalar multiple of the inner product, if necessary) the equality

(1) $L_X^2 = (x/x^*)I - x \cdot \theta \times^*$ for all x in A, where L_X denotes the left multiplication operator by x in A, I denotes the identity operator on A and, as usual, $x \cdot \theta \times^* (y) = (y/x^*)x$ for all y in A.

It is easily verified that D is alternative if and only if the above equality holds.

The proof of the equality (1) is obtained by suitable infinite dimensional extensions of the arguments of Sagle in [6] for which the Cartan decomposition in Lie H*-algebras given by schue [7] becomes crucial.

REFERENCES

- W. AMBROSE, Structure theorems for a special class of Banach algebras. Trans. Amer. Math. Soc. 57 (1945), 364-386.
- 2. J.A. CUENCA and A. RODRIGUEZ, Structure theory for noncommutative Jordan H*-algebras. To appear in J. Algebra.

- 3. O. LOOS, Über eine bezeiehung zwischen Malcev-algebren und Lie-tripelsystemen. Pacific J. Math. 18(1966), 553-562.
- 4. I. PEREZ DE GUZMAN, Structure theorem for alternative H*-algebras. Math. Proc. Camb. Phil. Soc. 94(1983), 437-446.
- A.A. SAGLE, Malcev algebras. Trans. Amer. Math. Soc. 101(1961), 426-458.
- 6. A.A. SAGLE, Simple Malcev algebras over fields of characteristic zero. Pacific J. Math. 12(1962), 1057-1078.
- 7. J.R. SCHUE, Cartan decompositions for L*-algebras. Trans. Amer. Math. Soc. 98(1961), 334-349.
- 8. J.R. SCHUE, Hilbert space methods in the theory of Lie algebras. Trans. Amer. Math. Soc. 95(1960), 69-80.
- 9. C. VIOLA DEVAPAKKIAM, Hilbert space methods in theory of Jordan algebras I. Math. Proc. Camb. Phil. Soc. 78(1975), 293-300.
- 10. C. VIOLA DEVAPAKKIAM, and P.S. REMA, Hilbert space methods in the theory of Jordan algebras II. Math. Proc. Camb. Phil. Soc. 79(1976) 307-319.